26 research outputs found

    Structural insight into the function of human peptidyl arginine deiminase 6

    Get PDF
    Peptidyl arginine deiminase 6 (PADI6 or PAD6) is vital for early embryonic development in mice and humans, yet its function remains elusive. PADI6 is less conserved than other PADIs and it is currently unknown whether it has a catalytic function. Here we show that human PADI6 dimerises like hPADIs 2–4, however, does not bind Ca2+ and is inactive in in vitro assays against standard PADI substrates. By determining the crystal structure of hPADI6, we show that hPADI6 is structured in the absence of Ca2+ where hPADI2 and hPADI4 are not, and the Ca-binding sites are not conserved. Moreover, we show that whilst the key catalytic aspartic acid and histidine residues are structurally conserved, the cysteine is displaced far from the active site centre and the hPADI6 active site pocket appears closed through a unique evolved mechanism in hPADI6, not present in the other PADIs. Taken together, these findings provide insight into how the function of hPADI6 may differ from the other PADIs based on its structure and provides a resource for characterising the damaging effect of clinically significant PADI6 variants

    1H, 13C, and 15N resonance assignments for the tandem PHD finger motifs of human CHD4

    Get PDF
    The plant homeodomain (PHD) zinc finger is a structural motif of about 40–60 amino acid residues found in many eukaryotic proteins that are involved in chromatin-mediated gene regulation. The human chromodomain helicase DNA binding protein 4 (CHD4) is a multi-domain protein that harbours, at its N-terminal end, a pair of PHD finger motifs (dPHD) connected by a ~30 amino acid linker. This tandem PHD motif is thought to be involved in targeting CHD4 to chromatin via its interaction with histone tails. Here we report the 1H, 13C and 15N backbone and side-chain resonance assignment of the entire dPHD by heteronuclear multidimensional NMR spectroscopy. These assignments provide the starting point for the determination of the structure, dynamics and histone-binding properties of this tandem domain pair

    Strategies for transitioning macrocyclic peptides to cell-permeable drug leads

    No full text
    The ready availability of potent peptide binders for any desired target highlights their potential impact as therapeutic agents. Despite their versatility, however, peptides tend to display unfavourable pharmacological properties, such as low bioavailability, high renal clearance and proteolytic degradation rates, and low cell permeability. Fortunately, an increasing number of promising strategies to produce novel peptides and furnish pre-existing scaffolds with more drug-like properties are now becoming available. These strategies include incorporation of non-proteinogenic amino acids, tag appendage to existing peptides and grafting onto scaffolds already possessing desirable pharmacokinetic properties. As a consequence, a variety of promising bioactive macrocyclic peptides have recently been discovered highlighting the promise of this class of molecules as future medicines.</p

    Structural and functional studies of chromatin modifying enzymes

    No full text
    Epigenetic regulation is a complex process involving the interplay of multiple different cellular factors. Work described in this thesis concerned the characterisation of proteins involved in the binding to, and demethylation of, histone 3 (H3) tails modified by N-methylation. Initial work focussed on the biophysical characterisation of the tandem plant homeodomains (PHD) of the chromatin remodeller CHD4. NMR spectroscopy was used to investigate the solution structure of the tandem PHDs. Studies on a more native-like construct including the C terminal tandem chromodomains are also presented. Binding studies of the PHDs with H3 peptides reveal that the individual PHD fingers can independently bind a histone peptide. The remainder of the work involved characterisation of JmjC histone demethylases (KDMs), enzymes that catalyse removal of NΔ-methyl groups from histone lysyl-residues. Initially, two members of the KDM7 subfamily, PHF8 and KIAA1718, were studied; a high throughput screening assay for them was developed, which enabled identification of a selective inhibitor of the KDM2/7 subfamilies of KDMs, the plant growth regulator Daminozide. A disease relevant mutation in PHF8 was studied and shown to cause mis-localisation of the enzyme to the cytoplasm, providing a potential explanation for the clinically observed phenotype. Subsequent chapters describe unprecedented activities for the JmjC KDMs. 2OG oxygenases catalyse a wide range of oxidative reactions, predominantly mediated by initial substrate hydroxylation. The activity of PHF8 with lysine analogous was tested; the results demonstrated that PHF8, and other KDMs, can oxidatively remove NΔ-alkyl groups other than methyl groups, such as ethyl and isopropyl groups. The substrate scope of the JmjC KDMs thus has the potential to be wider than previously thought. Observation of ÎČ-hydroxylation of the NΔ-isopropyl group of a histone peptide including NΔ methylisopropyllysine by JMJD2A/E supports the presumed mechanism of histone lysine demethylation as proceeding via initial hydroxylation. This work led to the discovery that JmjC KDMs can catalyse arginine demethylation. This novel arginine demethylase activity by JmjC KDMs was characterised and the work extended to encompass potential arginine demethylase activity in cells. Biochemical characterisation of UTY, a homologue of the H3 K27 demethylases JMJD3 and UTX, which is reported to be inactive, was carried out; UTY was shown to catalyse demethylation at H3 trimethylated at K27 on peptidic substrates, albeit it at substantially lower rates than the other family members. To investigate the reason for this reduced activity, two variants were made, S1142G and P1214I; the latter variant was shown to be considerably more active than wildtype UTY, likely due to an increased peptide-binding interaction. Preliminary experiments in cells did not conclusively demonstrate histone demethylation, but a luciferase assay suggested that UTY may have catalytic activity in cells. Overall the findings in the thesis suggest that the process of cellular epigenetic regulation is likely even more complex than previously thought, with the potential that JmjC KDMs carry out multiple, context dependent functions.This thesis is not currently available on ORA

    Protein Chemistry Looking Ahead: 8th Chemical Protein Synthesis Meeting 16-19 June 2019, Berlin, Germany

    No full text
    The 8 Chemical Protein Synthesis meeting took place in Berlin in June 2019, covering broad topics in protein chemistry, ranging from synthetic methodology to applications in medicine and biomaterials. The meeting was also the culmination of the Priority Program SPP1623 on “Chemoselective Reactions for the Synthesis and Application of Functional Proteins” funded by the German Science Foundation (DFG) from 2012 to 2018. We present highlights from presentations at the forefront of the field, grouped into broad themes that illustrate how the field of protein chemistry is looking ahead to new discoveries and applications.This meeting report presents highlights from the 8 Chemical Protein Synthesis meeting in Berlin in June 2019. The meeting covered broad topics in protein chemistry, ranging from synthetic methodology to applications in medicine and biomaterials and illustrated how the field is looking ahead to new discoveries and applications

    Analysis of JmjC Demethylase-Catalyzed Demethylation Using Geometrically-Constrained Lysine Analogues

    No full text
    The dynamic post-translational modifications of histones play important roles in the regulation of transcription in animals. The demethylation of <i>N</i><sup>Δ</sup>-methyl lysine residues in the <i>N</i>-terminal tail of histone H3 is catalyzed by demethylases, of which the largest family is the ferrous iron and 2-oxoglutarate dependent demethylases (JmjC KDMs), which catalyze demethylation via initial hydroxylation of the <i>N</i>-methyl groups. We report studies on the conformational requirements of the JmjC KDM substrates using <i>N</i>-methylated lysine analogues prepared by metathesis reactions of suitably protected <i>N</i>-allylglycine. The results support the proposed requirement for a positively charged <i>N</i><sup>Δ</sup>-amino group in JmjC KDM catalysis. Demethylation of a <i>trans</i>-C-4/C-5 dehydrolysine substrate analogue was observed with representative KDM4 subfamily members KDM4A, KDM4B and KDM4E, and KDM7B, which are predicted, based on crystallographic analyses, to bind the <i>N</i><sup>Δ</sup>-methylated lysine residue in different conformations during catalysis. This information may be useful in the design of JmjC KDM selective inhibitors
    corecore