6 research outputs found

    Deducing the pathogenic contribution of recessive ABCA4 alleles in an outbred population

    Get PDF
    Accurate prediction of the pathogenic effects of specific genotypes is important for the design and execution of clinical trials as well as for meaningful counseling of individual patients. However, for many autosomal recessive diseases, it can be difficult to deduce the relative pathogenic contribution of individual alleles because relatively few affected individuals share the same two disease-causing variations. In this study, we used multiple regression analysis to estimate the pathogenicity of specific alleles of ABCA4 in patients with retinal phenotypes ranging from Stargardt disease to retinitis pigmentosa. This analysis revealed quantitative allelic effects on two aspects of the visual phenotype, visual acuity (P < 10−3) and visual field (P < 10−7). Discordance between visual acuity and visual field in individual patients suggests the existence of at least two non-ABCA4 modifying factors. The findings of this study will facilitate the discovery of factors that modify ABCA4 disease and will also aid in the optimal selection of subjects for clinical trials of new therapies

    Gene transfer to the nonhuman primate retina with recombinant feline immunodeficiency virus vectors

    No full text
    We hypothesize that recombinant feline immunodeficiency viral (rFIV) vectors may be useful for gene transfer to the nonhuman primate retina. We performed vitrectomies and subretinal injections in the right eyes of 11 cynomolgus monkeys. Vesicular stomatitis virus glycoprotein-pseudotyped rFIV that expressed the Escherichia coli ?-galactosidase gene was injected into eight eyes. Sham vehicle or lactose buffer injections were also performed in two of these eight study eyes. rFIV pseudotyped with an amphotropic envelope was used in two eyes, and in one animal injections of lactose buffer only were given. After surgery the animals were clinically evaluated by retinal photography and electroretinography. ?-Galactosidase expression was evaluated, at a final end point, in histological sections. We found photoreceptor and Müller cells to have the greatest transgene expression. Focal inflammatory responses localized to the injection site were seen histologically in all eyes. No difference in transduction efficiency was seen between injections near the macula and more peripheral injections. Visual function as assessed by electroretinography was not significantly affected by vector or vehicle injections. We conclude that rFIV vectors administered beneath the retina can transduce a variety of retinal cells in the nonhuman primate retina. rFIV vectors have therapeutic potential and could be exploited to develop gene therapy for the human eye. <br/

    Autosomal Recessive Retinitis Pigmentosa Caused by Mutations in the MAK Gene

    No full text
    In a prior study, a new autosomal recessive retinitis pigmentosa gene (male germ cell–associated kinase; MAK) was recently identified. In this report, ophthalmoscopic, electrophysiologic, perimetric, and OCT features of 24 individuals with mutations in this gene are described
    corecore