44 research outputs found

    A Framework for Prioritizing the TESS Planetary Candidates Most Amenable to Atmospheric Characterization

    Get PDF
    A key legacy of the recently launched TESS mission will be to provide the astronomical community with many of the best transiting exoplanet targets for atmospheric characterization. However, time is of the essence to take full advantage of this opportunity. JWST, although delayed, will still complete its nominal five year mission on a timeline that motivates rapid identification, confirmation, and mass measurement of the top atmospheric characterization targets from TESS. Beyond JWST, future dedicated missions for atmospheric studies such as ARIEL require the discovery and confirmation of several hundred additional sub-Jovian size planets (R_p < 10 R_Earth) orbiting bright stars, beyond those known today, to ensure a successful statistical census of exoplanet atmospheres. Ground-based ELTs will also contribute to surveying the atmospheres of the transiting planets discovered by TESS. Here we present a set of two straightforward analytic metrics, quantifying the expected signal-to-noise in transmission and thermal emission spectroscopy for a given planet, that will allow the top atmospheric characterization targets to be readily identified among the TESS planet candidates. Targets that meet our proposed threshold values for these metrics would be encouraged for rapid follow-up and confirmation via radial velocity mass measurements. Based on the catalog of simulated TESS detections by Sullivan et al. (2015), we determine appropriate cutoff values of the metrics, such that the TESS mission will ultimately yield a sample of 300\sim300 high-quality atmospheric characterization targets across a range of planet size bins, extending down to Earth-size, potentially habitable worlds.Comment: accepted to PAS

    JWST-TST DREAMS: Quartz Clouds in the Atmosphere of WASP-17b

    Full text link
    Clouds are prevalent in many of the exoplanet atmospheres that have been observed to date. For transiting exoplanets, we know if clouds are present because they mute spectral features and cause wavelength-dependent scattering. While the exact composition of these clouds is largely unknown, this information is vital to understanding the chemistry and energy budget of planetary atmospheres. In this work, we observe one transit of the hot Jupiter WASP-17b with JWST's MIRI LRS and generate a transmission spectrum from 5-12 μ\rm{\mu}m. These wavelengths allow us to probe absorption due to the vibrational modes of various predicted cloud species. Our transmission spectrum shows additional opacity centered at 8.6 μ\rm{\mu}m, and detailed atmospheric modeling and retrievals identify this feature as SiO2_2(s) (quartz) clouds. The SiO2_2(s) clouds model is preferred at 3.5-4.2σ\sigma versus a cloud-free model and at 2.6σ\sigma versus a generic aerosol prescription. We find the SiO2_2(s) clouds are comprised of small 0.01{\sim}0.01 μ\rm{\mu}m particles, which extend to high altitudes in the atmosphere. The atmosphere also shows a depletion of H2_2O, a finding consistent with the formation of high-temperature aerosols from oxygen-rich species. This work is part of a series of studies by our JWST Telescope Scientist Team (JWST-TST), in which we will use Guaranteed Time Observations to perform Deep Reconnaissance of Exoplanet Atmospheres through Multi-instrument Spectroscopy (DREAMS).Comment: 19 pages, 7 figures, accepted for publication in ApJ

    Two Warm Super-Earths Transiting the Nearby M Dwarf TOI-2095

    Full text link
    We report the detection and validation of two planets orbiting TOI-2095 (TIC 235678745). The host star is a 3700K M1V dwarf with a high proper motion. The star lies at a distance of 42 pc in a sparsely populated portion of the sky and is bright in the infrared (K=9). With data from 24 Sectors of observation during TESS's Cycles 2 and 4, TOI-2095 exhibits two sets of transits associated with super-Earth-sized planets. The planets have orbital periods of 17.7 days and 28.2 days and radii of 1.30 and 1.39 Earth radii, respectively. Archival data, preliminary follow-up observations, and vetting analyses support the planetary interpretation of the detected transit signals. The pair of planets have estimated equilibrium temperatures of approximately 400 K, with stellar insolations of 3.23 and 1.73 times that of Earth, placing them in the Venus zone. The planets also lie in a radius regime signaling the transition between rock-dominated and volatile-rich compositions. They are thus prime targets for follow-up mass measurements to better understand the properties of warm, transition radius planets. The relatively long orbital periods of these two planets provide crucial data that can help shed light on the processes that shape the composition of small planets orbiting M dwarfs.Comment: Submitted to AAS Journal

    Plant Species\u27 Origin Predicts Dominance and Response to Nutrient Enrichment and Herbivores in Global Grasslands

    Get PDF
    Exotic species dominate many communities; however the functional significance of species\u27 biogeographic origin remains highly contentious. This debate is fuelled in part by the lack of globally replicated, systematic data assessing the relationship between species provenance, function and response to perturbations. We examined the abundance of native and exotic plant species at 64 grasslands in 13 countries, and at a subset of the sites we experimentally tested native and exotic species responses to two fundamental drivers of invasion, mineral nutrient supplies and vertebrate herbivory. Exotic species are six times more likely to dominate communities than native species. Furthermore, while experimental nutrient addition increases the cover and richness of exotic species, nutrients decrease native diversity and cover. Native and exotic species also differ in their response to vertebrate consumer exclusion. These results suggest that species origin has functional significance, and that eutrophication will lead to increased exotic dominance in grasslands

    The TESS Objects of Interest Catalog from the TESS Prime Mission

    Get PDF
    We present 2241 exoplanet candidates identified with data from the Transiting Exoplanet Survey Satellite (TESS) during its 2 yr Prime Mission. We list these candidates in the TESS Objects of Interest (TOI) Catalog, which includes both new planet candidates found by TESS and previously known planets recovered by TESS observations. We describe the process used to identify TOIs, investigate the characteristics of the new planet candidates, and discuss some notable TESS planet discoveries. The TOI catalog includes an unprecedented number of small planet candidates around nearby bright stars, which are well suited for detailed follow-up observations. The TESS data products for the Prime Mission (sectors 1-26), including the TOI catalog, light curves, full-frame images, and target pixel files, are publicly available at the Mikulski Archive for Space Telescopes
    corecore