4 research outputs found

    Potent and broad HIV-neutralizing antibodies in memory B cells and plasma

    Get PDF
    Induction of broadly neutralizing antibodies (bnAbs) is a goal of HIV-1 vaccine development. Antibody 10E8, reactive with the distal portion of the membrane-proximal external region (MPER) of HIV-1 gp41, is broadly neutralizing. However, the ontogeny of distal MPER antibodies and the relationship of memory B cell to plasma bnAbs are poorly understood. HIV-1–specific memory B cell flow sorting and proteomic identification of anti-MPER plasma antibodies from an HIV-1–infected individual were used to isolate broadly neutralizing distal MPER bnAbs of the same B cell clonal lineage. Structural analysis demonstrated that antibodies from memory B cells and plasma recognized the envelope gp41 bnAb epitope in a distinct orientation compared with other distal MPER bnAbs. The unmutated common ancestor of this distal MPER bnAb was autoreactive, suggesting lineage immune tolerance control. Construction of chimeric antibodies of memory B cell and plasma antibodies yielded a bnAb that potently neutralized most HIV-1 strains

    Factors affecting the global distribution of Hydrilla verticillata

    No full text
    Hydrilla verticillata (Hydrocharitaceae) is a submerged freshwater flowering plant within the monotypic genus. Over the geological periods, fossils of this family and genus have shown distinct diversifications between warm and cool fluctuations with more adaptations occurring in warmer periods and suppressions during severely cold paleoclimate changes. Recently, H. verticillata has shown a wide range of adaptive plasticity, allowing successful proliferation into non-native regions, whilst also undergoing unexplained disappearance from its native localities, and this phenomenon has stimulated this inquiry. Against this somewhat complex background, particular interest for this investigation has been focussed on an understanding of which aspects of climate change have contributed towards global adaptations and distribution patterns of H. verticillata. Whilst it is recognised that some of these changes are natural, other aggravating impacts are due to anthropogenic influences. Identifying the appropriate combinations of these climatic factors (temperature, rainfall, photoperiod), in concert with environmental (water level, CO2, salinity, eutrophication), geographical (altitude, latitude) and other factors (UV-B) are necessary precursors for instituting appropriate management strategies. In this respect, control measures are needed in non-native regions and restoration of this plant in native habitats are essential for its ecologically balanced global distribution. © 2021 European Weed Research Societ
    corecore