1,312 research outputs found

    Quantum Entanglement Initiated Super Raman Scattering

    Get PDF
    It has now been possible to prepare chain of ions in an entangled state and thus question arises --- how the optical properties of a chain of entangled ions differ from say a chain of independent particles. We investigate nonlinear optical processes in such chains. We explicitly demonstrate the possibility of entanglement produced super Raman scattering. Our results in contrast to Dicke's work on superradiance are applicable to stimulated processes and are thus free from the standard complications of multimode quantum electrodynamics. Our results suggest the possibility of similar enhancement factors in other nonlinear processes like four wave mixing.Comment: 4 pages, 1 figur

    Thermal breakdown of coherent backscattering: a case study of quantum duality

    Full text link
    We investigate coherent backscattering of light by two harmonically trapped atoms in the light of quantitative quantum duality. Including recoil and Doppler shift close to an optical resonance, we calculate the interference visibility as well as the amount of which-path information, both for zero and finite temperature.Comment: published version with minor changes and an added figur

    Non-classical photon pair generation in atomic vapours

    Full text link
    A scheme for the generation of non-classical pairs of photons in atomic vapours is proposed. The scheme exploits the fact that the cross correlation of the emission of photons from the extreme transitions of a four-level cascade system shows anti-bunching which has not been reported earlier and which is unlike the case of the three level cascade emission which shows bunching. The Cauchy-Schwarz inequality which is the ratio of cross-correlation to the auto correlation function in this case is estimated to be 103−10610^3-10^6 for controllable time delay, and is one to four orders of magnitude larger compared to previous experiments. The choice of Doppler free geometry in addition to the fact that at three photon resonance the excitation/deexcitation processes occur in a very narrow frequency band, ensures cleaner signals.Comment: 18 pages, 7 figure

    Effects of frequency correlation in linear optical entangling gate operated with independent photons

    Full text link
    Bose-Einstein coalescence of independent photons at the surface of a beam splitter is the physical process that allows linear optical quantum gates to be built. When distinct parametric down-conversion events are used as an independent photon source, distinguishability arises form the energy correlation of each photon with its twin. We find that increasing the pump bandwidth may help in improving the visibility of non-classical interference and reaching a level of near perfect indistinguishability. PACS: 03.67.Mn, 42.65.Lm, 42.50.St.Comment: Replaced with published versio

    Quantum Frequency Translation of Single-Photon States in Photonic Crystal Fiber

    Full text link
    We experimentally demonstrate frequency translation of a nonclassical optical field via the Bragg scattering four-wave mixing process in a photonic crystal fiber (PCF). The high nonlinearity and the ability to control dispersion in PCF enable efficient translation between photon channels within the visible to-near-infrared spectral range, useful in quantum networks. Heralded single photons at 683 nm were translated to 659 nm with an efficiency of 28.6±2.228.6 \pm 2.2 percent. Second-order correlation measurements on the 683-nm and 659-nm fields yielded g683(2)(0)=0.21±0.02g^{(2)}_{683}(0) = 0.21 \pm 0.02 and g659(2)(0)=0.19±0.05g^{(2)}_{659}(0) = 0.19 \pm 0.05 respectively, showing the nonclassical nature of both fields.Comment: 5 pages, 3 figure

    Strong extinction of a laser beam by a single molecule

    Get PDF
    We present an experiment where a single molecule strongly affects the amplitude and phase of a laser field emerging from a subwavelength aperture. We achieve a visibility of -6% in direct and +10% in cross-polarized detection schemes. Our analysis shows that a close to full extinction should be possible using near-field excitation.Comment: 5 pages, 4 figures, submitted to PR

    Nonlinear Interferometry via Fock State Projection

    Full text link
    We use a photon-number resolving detector to monitor the photon number distribution of the output of an interferometer, as a function of phase delay. As inputs we use coherent states with mean photon number up to seven. The postselection of a specific Fock (photon-number) state effectively induces high-order optical non-linearities. Following a scheme by Bentley and Boyd [S.J. Bentley and R.W. Boyd, Optics Express 12, 5735 (2004)] we explore this effect to demonstrate interference patterns a factor of five smaller than the Rayleigh limit.Comment: 4 pages, 5 figure

    Theory and it ab initio calculation of radiative lifetime of excitons in semiconducting carbon nanotubes

    Full text link
    We present theoretical analysis and first-principles calculation of the radiative lifetime of excitons in semiconducting carbon nanotubes. An intrinsic lifetime of the order of 10 ps is computed for the lowest optically active bright excitons. The intrinsic lifetime is however a rapid increasing function of the exciton momentum. Moreover, the electronic structure of the nanotubes dictates the existence of dark excitons nearby in energy to each bright exciton. Both effects strongly influence measured lifetime. Assuming a thermal occupation of bright and dark exciton bands, we find an effective lifetime of the order of 10 ns at room temperature, in good accord with recent experiments.Comment: 12 pages, 3 figure

    Canonical, squeezed and fermionic coherent states in a right quaternionic Hilbert space with a left multiplication on it

    Full text link
    Using a left multiplication defined on a right quaternionic Hilbert space, we shall demonstrate that various classes of coherent states such as the canonical coherent states, pure squeezed states, fermionic coherent states can be defined with all the desired properties on a right quaternionic Hilbert space. Further, we shall also demonstrate squeezed states can be defined on the same Hilbert space, but the noncommutativity of quaternions prevents us in getting the desired results.Comment: Conference paper. arXiv admin note: text overlap with arXiv:1704.02946; substantial text overlap with arXiv:1706.0068
    • …
    corecore