13 research outputs found

    Effects of Fire on Landscape Heterogeneity in Yellowstone National Park, Wyoming

    No full text
    A map of burn severity resulting from the 1988 fires that occurred in Yellowstone National Park (YNP) was derived from Landsat Thematic Mapper (TM) imagery and used to assess the isolation of burned areas, the heterogeneity that resulted from fires burning under moderate and severe burning conditions, and the relationship between heterogeneity and fire size. About 80% of the park is covered with coniferous forests dominated by lodgepole pine (Pinus contorta var. latifolia). The majority of severely burned areas were within close proximity (50 to 200 m) to unburned or lightly burned areas, suggesting that few burned sites are very far from potential sources of propagules for plant re-establishment. Fires that occurred under moderate burning conditions early during the 1988 fire season resulted in a lower proportion of crown fire than fires that occurred under severe burning conditions later in the season. Increased dominance and contagion of burn severity classes and decrease in the edge:area ratio for later fires indicated a slightly more aggregated burn pattern compared to early fires. The proportion of burned area in different burn severity classes varied as a function of daily fire size. When daily area burned was relatively low, the proportion of burned area in each burn severity class varied widely. When daily burned area exceeded 1250 ha, the burned area contained about 50% crown fire, 30% severe surface burn, and 20% light surface burn. Understanding the effect of fire on landscape heterogeneity is important because the kinds, amounts, and spatial distribution of burned and unburned areas may influence the reestablishment of plant species on burned sites

    Late‐stage calcites in the Permian Capitan Formation and its equivalents, Delaware Basin margin, west Texas and New Mexico: evidence for replacement of precursor evaporites

    No full text
    Comparison of Upper Guadalupian fore‐reef, reef and back‐reef strata from outcrops in the Guadalupe Mountains with equivalent subsurface cores from the northern and eastern margins of the Delaware Basin indicates that extensive evaporite diagenesis has occurred in both areas. In both surface and subsurface sections, the original sediments were extensively dolomitized and most primary and secondary porosity was filled with anhydrite. These evaporites were emplaced by reflux of evaporitic fluids from shelf settings through solution‐enlarged fractures and karstic sink holes into the underlying strata. Outcrop areas today, however, contain no preserved evaporites in reef and fore‐reef sections and only partial remnants of evaporites are retained in back‐reef settings. In their place, these rocks contain minor silica, very large volumes of coarse sparry calcite and some secondary porosity. The replacement minerals locally form pseudomorphs of their evaporite precursors and, less commonly, contain solid anhydrite inclusions. Some silicification, dissolution of anhydrite and conversion of anhydrite to gypsum have occurred in these strata where they are still buried at depths in excess of 1 km; however, no calcite replacements were noted from any subsurface core samples. Subsurface alteration has also led to the widespread, late‐stage development of large‐ and small‐scale dissolution breccias. The restriction of calcite cements to very near‐surface sections, petrographic evidence that the calcites post‐date hydrocarbon emplacement, and the highly variable but generally ‘light’carbon and oxygen isotopic signatures of the spars all indicate that calcite precipitation is a very late diagenetic (telogenetic) phenomenon. Evaporite dissolution and calcitization reactions have only taken place where Permian strata were flushed with meteoric fluids as a consequence of Tertiary uplift, tilting and breaching of regional hydrological seals. A typical sequence of alteration involves initial corrosion of anhydrite, one or more stage
    corecore