30 research outputs found
Electronic states and quantum transport in double-wall carbon nanotubes
Electronic states and transport properties of double-wall carbon nanotubes
without impurities are studied in a systematic manner. It is revealed that
scattering in the bulk is negligible and the number of channels determines the
average conductance. In the case of general incommensurate tubes, separation of
degenerated energy levels due to intertube transfer is suppressed in the energy
region higher than the Fermi energy but not in the energy region lower than
that. Accordingly, in the former case, there are few effects of intertube
transfer on the conductance, while in the latter case, separation of
degenerated energy levels leads to large reduction of the conductance. It is
also found that in some cases antiresonance with edge states in inner tubes
causes an anomalous conductance quantization, , near the Fermi
energy.Comment: 24 pages, 13 figures, to be published in Physical Review
Formation of nano-fibers and micro-spheres by femtosecond laser ablation of chalcogenide glass
Abstract not reproduced here by request of the publisher. The text is available from http://dx.doi.org/10.1117/12.751936