325 research outputs found
Phonons from neutron powder diffraction
The spherically averaged structure function \soq obtained from pulsed
neutron powder diffraction contains both elastic and inelastic scattering via
an integral over energy. The Fourier transformation of \soq to real space, as
is done in the pair density function (PDF) analysis, regularizes the data, i.e.
it accentuates the diffuse scattering. We present a technique which enables the
extraction of off-center phonon information from powder diffraction experiments
by comparing the experimental PDF with theoretical calculations based on
standard interatomic potentials and the crystal symmetry. This procedure
(dynamics from powder diffraction(DPD)) has been successfully implemented for
two systems, a simple metal, fcc Ni, and an ionic crystal, CaF. Although
computationally intensive, this data analysis allows for a phonon based
modeling of the PDF, and additionally provides off-center phonon information
from powder neutron diffraction
Storage Device Sizing for a Hybrid Railway Traction System by Means of Bicausal Bond Graphs
In this paper, the application of bicausal bond graphs for system design in electrical engineering is emphasized. In particular, it is shown how this approach is very useful for model inversion and parameter dimensioning. To illustrate these issues, a hybrid railway traction device is considered as a case study. The synthesis of a storage device (a supercapacitor) included in this system is then discussed
Orbital and spin chains in ZnV2O4
Our powder inelastic neutron scattering data indicate that \zvo is a system
of spin chains that are three dimensionally tangled in the cubic phase above 50
K due to randomly occupied orbitals of V () ions. Below
50 K in the tetragonal phase, the chains become straight due to
antiferro-orbital ordering. This is evidenced by the characteristic wave vector
dependence of the magnetic structure factor that changes from symmetric to
asymmetric at the cubic-to-tetragonal transition
Nano-magnetic droplets and implications to orbital ordering in La1-xSrxCoO3
Inelastic cold neutron scattering on LaCoO3 provided evidence for a distinct
low energy excitation at 0.6 meV coincident with the thermally induced magnetic
transition. Coexisting strong ferromagnetic (FM) and weaker antiferromagnetic
(AFM) correlations that are dynamic follow the activation to the excited state,
identified as the intermediate S=1 spin triplet. This is indicative of
dynamical orbital ordering favoring the observed magnetic interactions. With
hole doping as in La1-xSrxCoO3, the FM correlations between Co spins become
static and isotropically distributed due to the formation of FM droplets. The
correlation length and condensation temperature of these droplets increase
rapidly with metallicity due to the double exchange mechanism.Comment: To appear in Phys. Rev. Let
Analysis and design of a silicide-tetrahedrite thermoelectric generator concept suitable for large-scale industrial waste heat recovery
Industrial Waste Heat Recovery (IWHR) is one of the areas with strong potential for energy efficiency and emissions reductions in industry. Thermoelectric (TE) generators (TEGs) are among the few technologies that are intrinsically modular and can convert heat directly into electricity without moving parts, so they are nearly maintenance-free and can work unattended for long periods of time. However, most existing TEGs are only suitable for small-scale niche applications because they typically display a cost per unit power and a conversion efficiency that is not competitive with competing technologies, and they also tend to rely on rare and/or toxic materials. Moreover, their geometric configuration, manufacturing methods and heat exchangers are often not suitable for large-scale applications. The present analysis aims to tackle several of these challenges. A module incorporating constructive solutions suitable for upscaling, namely, using larger than usual TE elements (up to 24 mm in diameter) made from affordable p-tetrahedrite and n-magnesium silicide materials, was assessed with a multiphysics tool for conditions typical of IWHR. Geometric configurations optimized for efficiency, power per pair and power density, as well as an efficiency/power balanced solution, were extracted from these simulations. A balanced solution provided 0.62 kWe/m2 with a 3.9% efficiency. Good prospects for large-scale IWHR with TEGs are anticipated if these figures could be replicated in a real-world application and implemented with constructive solutions suitable for large-scale systems.Fundação para a Ciência e a Tecnologia, European Regional Development Fund (ERDF),
P.O.F.C.—COMPETE, European and National Funds: M-ERA.net Project THERMOSS (M-ERANET2/0011/2016), MEtRICs—Mechanical Engineering and Resource Sustainability Centre (UIDB/
04077/2020), C2TN—Center for Nuclear Sciences and Technologies (UID/Multi/04349/2019), Project
Exhaust2Energy (PTDC/EMS-ENE/3009/2014)
Directing Differentiation of Pluripotent Stem Cells Toward Retinal Pigment Epithelium Lineage
Development of efficient and reproducible conditions for directed differentiation of pluripotent stem cells into specific cell types is important not only to understand early human development but also to enable more practical applications, such as in vitro disease modeling, drug discovery, and cell therapies. The differentiation of stem cells to retinal pigment epithelium (RPE) in particular holds promise as a source of cells for therapeutic replacement in age-related macular degeneration. Here we show development of an efficient method for deriving homogeneous RPE populations in a period of 45 days using an adherent, monolayer system and defined xeno-free media and matrices. The method utilizes sequential inhibition and activation of the Activin and bone morphogenetic protein signaling pathways and can be applied to both human embryonic stem cells and induced pluripotent stem cells as the starting population. In addition, we use whole genome transcript analysis to characterize cells at different stages of differentiation that provides further understanding of the developmental dynamics and fate specification of RPE. We show that with the described method, RPE develop through stages consistent with their formation during embryonic development. This characterization- together with the absence of steps involving embryoid bodies, three-dimensional culture, or manual dissections, which are common features of other protocols-makes this process very attractive for use in research as well as for clinical applications. SIGNIFICANCE: This report describes a novel method of directed differentiation to generate retinal pigment epithelium (RPE) cells from pluripotent stem cells. The employed method is based on adherent monolayer culture using xeno-free conditions and manipulation of the Activin and bone morphogenetic protein signaling pathway using small molecules and recombinant proteins. Whole genome microarray analysis was performed to characterize the differentiation process and understand the developmental path of RPE generation in vitro. This method can be applied for generation of RPE for research as well as for clinical applications
Aspects of environmental impacts of seawater desalination : Cyprus as a case study
Acknowledgements The authors are grateful to the European Commission for supporting the activities carried out in the framework of the H2020 European project ZERO BRINE (project under grant agreement No. 730390). The authors would equally like to thank the TOTAL Foundation (Project “Diversity of brown algae in the Eastern Mediterranean”) and the UK Natural Environment Research Council for their support to FCK (program Oceans 2025 – WP 4.5 and grants NE/D521522/1 and NE/J023094/1). This work also received support from the Marine Alliance for Science and Technology for Scotland pooling initiative. MASTS is funded by the Scottish Funding Council (grant reference HR09011) and contributing institutions. The authors would also like to thank representatives from competent authorities in Cyprus providing data, and specifically Nicoletta Kythreotou from the Department of Environment, George Ashikalis from the Transmission System Operator, Dr. DinosPoullis and Lia Georgiou from the Water Development Department.Peer reviewedPublisher PD
Evidence for charge localization in the ferromagnetic phase of La_(1-x)Ca_(x)MnO_3 from High real-space-resolution x-ray diffraction
High real-space-resolution atomic pair distribution functions of
La_(1-x)Ca_(x)MnO_3 (x=0.12, 0.25 and 0.33) have been measured using
high-energy x-ray powder diffraction to study the size and shape of the MnO_6
octahedron as a function of temperature and doping. In the paramagnetic
insulating phase we find evidence for three distinct bond-lengths (~ 1.88, 1.95
and 2.15A) which we ascribe to Mn^{4+}-O, Mn^{3+}-O short and Mn^{3+}-O long
bonds respectively. In the ferromagnetic metallic (FM) phase, for x=0.33 and
T=20K, we find a single Mn-O bond-length; however, as the metal-insulator
transition is approached either by increasing T or decreasing x, intensity
progressively appears around r=2.15 and in the region 1.8 - 1.9A suggesting the
appearance of Mn^{3+}-O long bonds and short Mn^{4+}-O bonds. This is strong
evidence that charge localized and delocalized phases coexist close to the
metal-insulator transition in the FM phase.Comment: 8 pages, 8 postscript figures, submitted to Phys. Rev.
Magnetic-field-induced collapse of charge-ordered nanoclusters and the Colossal Magnetoresistance effect in Nd(0.3)Sr(0.3)MnO(3)
We report synchrotron x-ray scattering studies of charge/orbitally ordered
(COO) nanoclusters in NdSrMnO. We find that the COO
nanoclusters are strongly suppressed in an applied magnetic field, and that
their decreasing concentration follows the field-induced decrease of the sample
electrical resistivity. The COO nanoclusters, however, do not completely
disappear in the conducting state, suggesting that this state is inhomogeneous
and contains an admixture of an insulating phase. Similar results were also
obtained for the zero-field insulator-metal transition that occurs as
temperature is reduced. These observations suggest that these correlated
lattice distortions play a key role in the Colossal Magnetoresistance effect in
this prototypical manganite.Comment: 5 pages, 3 embedded eps figures; to appear in PRB Rapid
Commumication
- …