90 research outputs found
Individual mapping of innate immune cell activation is a candidate marker of patient-specific trajectories of disability worsening in Multiple Sclerosis
Objective: To develop a novel approach to generate individual maps of white matter (WM) innate immune cell activation using 18F-DPA-714 translocator protein (TSPO) positron emission tomography (PET), and to explore the relationship between these maps and individual trajectories of disability worsening in patients with multiple sclerosis (MS). Methods: Patients with MS (n = 37), whose trajectories of disability worsening over the 2 years preceding study entry were calculated, and healthy controls (n = 19) underwent magnetic resonance magnetic and 18F-DPA-714 PET. A threshold of significant activation of 18F-DPA-714 binding was calculated with a voxel-wise randomized permutation-based comparison between patients and controls, and used to classify each WM voxel in patients as characterized by a significant activation of innate immune cells (DPA+) or not. Individual maps of innate immune cell activation in the WM were employed to calculate the extent of activation in WM regions-of-interests and to classify each WM lesion as "DPA-active", "DPA-inactive" or "unclassified". Results: Compared with the WM of healthy controls, patients with MS had a significantly higher percentage of DPA+ voxels in the normal-appearing WM, (NAWM in patients=24.9±9.7%; WM in controls=14.0±7.8%, p<0.001). In patients with MS, the percentage of DPA+ voxels showed a significant increase from NAWM, to perilesional areas, T2 hyperintense lesions and T1 hypointense lesions (38.1±13.5%, 45.0±17.9%, and 51.9±22.9%, respectively, p<0.001). Among the 1379 T2 lesions identified, 512 were defined as DPA-active and 258 as DPA-inactive. A higher number of lesions classified as DPA-active (OR=1.13, P = 0.009), a higher percentage of DPA+ voxels in the NAWM (OR=1.16, P = 0.009) and in T1-spin-echo lesions (OR=1.06, P = 0.036), were significantly associated with a retrospective more severe clinical trajectory in patients with MS. Conclusion: A more severe trajectory of disability worsening in MS is associated with an innate immune cells activation inside and around WM lesions. 18F-DPA-714 PET may provide a promising biomarker to identify patients at risk of severe clinical trajectory
Dynamic imaging of individual remyelination profiles in multiple sclerosis
Background Quantitative in vivo imaging of myelin loss and repair in patients with multiple sclerosis (MS) is essential to understand the pathogenesis of the disease and to evaluate promyelinating therapies. Selectively binding myelin in the central nervous system white matter, Pittsburgh compound B ([11C]PiB) can be used as a positron emission tomography (PET) tracer to explore myelin dynamics in MS. Methods Patients with active relapsing-remitting MS (n = 20) and healthy controls (n = 8) were included in a longitudinal trial combining PET with [11C]PiB and magnetic resonance imaging. Voxel-wise maps of [11C]PiB distribution volume ratio, reflecting myelin content, were derived. Three dynamic indices were calculated for each patient: the global index of myelin content change; the index of demyelination; and the index of remyelination. Results At baseline, there was a progressive reduction in [11C]PiB binding from the normal-appearing white matter to MS lesions, reflecting a decline in myelin content. White matter lesions were characterized by a centripetal decrease in the tracer binding at the voxel level. During follow-up, high between-patient variability was found for all indices of myelin content change. Dynamic remyelination was inversely correlated with clinical disability (p = 0.006 and beta-coefficient = -0.67 with the Expanded Disability Status Scale; p = 0.003 and beta-coefficient = -0.68 with the MS Severity Scale), whereas no significant clinical correlation was found for the demyelination index. Interpretation [11C]PiB PET allows quantification of myelin dynamics in MS and enables stratification of patients depending on their individual remyelination potential, which significantly correlates with clinical disability. This technique should be considered to assess novel promyelinating drugs. Ann Neurol 2016;79:726-73
Ponzano-Regge model revisited I: Gauge fixing, observables and interacting spinning particles
We show how to properly gauge fix all the symmetries of the Ponzano-Regge
model for 3D quantum gravity. This amounts to do explicit finite computations
for transition amplitudes. We give the construction of the transition
amplitudes in the presence of interacting quantum spinning particles. We
introduce a notion of operators whose expectation value gives rise to either
gauge fixing, introduction of time, or insertion of particles, according to the
choice. We give the link between the spin foam quantization and the hamiltonian
quantization. We finally show the link between Ponzano-Regge model and the
quantization of Chern-Simons theory based on the double quantum group of SU(2)Comment: 48 pages, 15 figure
Hidden Quantum Gravity in 3d Feynman diagrams
In this work we show that 3d Feynman amplitudes of standard QFT in flat and
homogeneous space can be naturally expressed as expectation values of a
specific topological spin foam model. The main interest of the paper is to set
up a framework which gives a background independent perspective on usual field
theories and can also be applied in higher dimensions. We also show that this
Feynman graph spin foam model, which encodes the geometry of flat space-time,
can be purely expressed in terms of algebraic data associated with the Poincare
group. This spin foam model turns out to be the spin foam quantization of a BF
theory based on the Poincare group, and as such is related to a quantization of
3d gravity in the limit where the Newton constant G_N goes to 0. We investigate
the 4d case in a companion paper where the strategy proposed here leads to
similar results.Comment: 35 pages, 4 figures, some comments adde
Ponzano-Regge model revisited III: Feynman diagrams and Effective field theory
We study the no gravity limit G_{N}-> 0 of the Ponzano-Regge amplitudes with
massive particles and show that we recover in this limit Feynman graph
amplitudes (with Hadamard propagator) expressed as an abelian spin foam model.
We show how the G_{N} expansion of the Ponzano-Regge amplitudes can be
resummed. This leads to the conclusion that the dynamics of quantum particles
coupled to quantum 3d gravity can be expressed in terms of an effective new non
commutative field theory which respects the principles of doubly special
relativity. We discuss the construction of Lorentzian spin foam models
including Feynman propagatorsComment: 46 pages, the wrong file was first submitte
Group field theory formulation of 3d quantum gravity coupled to matter fields
We present a new group field theory describing 3d Riemannian quantum gravity
coupled to matter fields for any choice of spin and mass. The perturbative
expansion of the partition function produces fat graphs colored with SU(2)
algebraic data, from which one can reconstruct at once a 3-dimensional
simplicial complex representing spacetime and its geometry, like in the
Ponzano-Regge formulation of pure 3d quantum gravity, and the Feynman graphs
for the matter fields. The model then assigns quantum amplitudes to these fat
graphs given by spin foam models for gravity coupled to interacting massive
spinning point particles, whose properties we discuss.Comment: RevTeX; 28 pages, 21 figure
Sumoylation of Hypoxia-Inducible Factor-1α Ameliorates Failure of Brain Stem Cardiovascular Regulation in Experimental Brain Death
One aspect of brain death is cardiovascular deregulation because asystole invariably occurs shortly after its diagnosis. A suitable neural substrate for mechanistic delineation of this aspect of brain death resides in the rostral ventrolateral medulla (RVLM). RVLM is the origin of a life-and-death signal that our laboratory detected from blood pressure of comatose patients that disappears before brain death ensues. At the same time, transcriptional upregulation of heme oxygenase-1 in RVLM by hypoxia-inducible factor-1α (HIF-1α) plays a pro-life role in experimental brain death, and HIF-1α is subject to sumoylation activated by transient cerebral ischemia. It follows that sumoylation of HIF-1α in RVLM in response to hypoxia may play a modulatory role on brain stem cardiovascular regulation during experimental brain death.A clinically relevant animal model that employed mevinphos as the experimental insult in Sprague-Dawley rat was used. Biochemical changes in RVLM during distinct phenotypes in systemic arterial pressure spectrum that reflect maintained or defunct brain stem cardiovascular regulation were studied. Western blot analysis, EMSA, ELISA, confocal microscopy and immunoprecipitation demonstrated that drastic tissue hypoxia, elevated levels of proteins conjugated by small ubiquitin-related modifier-1 (SUMO-1), Ubc9 (the only known conjugating enzyme for the sumoylation pathway) or HIF-1α, augmented sumoylation of HIF-1α, nucleus-bound translocation and enhanced transcriptional activity of HIF-1α in RVLM neurons took place preferentially during the pro-life phase of experimental brain death. Furthermore, loss-of-function manipulations by immunoneutralization of SUMO-1, Ubc9 or HIF-1α in RVLM blunted the upregulated nitric oxide synthase I/protein kinase G signaling cascade, which sustains the brain stem cardiovascular regulatory machinery during the pro-life phase.We conclude that sumoylation of HIF-1α in RVLM ameliorates brain stem cardiovascular regulatory failure during experimental brain death via upregulation of nitric oxide synthase I/protein kinase G signaling. This information should offer new therapeutic initiatives against this fatal eventuality
The risk of infections for multiple sclerosis and neuromyelitis optica spectrum disorder disease-modifying treatments: Eighth European Committee for Treatment and Research in Multiple Sclerosis Focused Workshop Review. April 2021
Over the recent years, the treatment of multiple sclerosis (MS) and neuromyelitis optica spectrum disorder (NMOSD) has evolved very rapidly and a large number of disease-modifying treatments (DMTs) are now available. However, most DMTs are associated with adverse events, the most frequent of which being infections. Consideration of all DMT-associated risks facilitates development of risk mitigation strategies. An international focused workshop with expert-led discussions was sponsored by the European Committee for Treatment and Research in Multiple Sclerosis (ECTRIMS) and was held in April 2021 to review our current knowledge about the risk of infections associated with the use of DMTs for people with MS and NMOSD and corresponding risk mitigation strategies. The workshop addressed DMT-associated infections in specific populations, such as children and pregnant women with MS, or people with MS who have other comorbidities or live in regions with an exceptionally high infection burden. Finally, we reviewed the topic of DMT-associated infectious risks in the context of the current SARS-CoV-2 pandemic. Herein, we summarize available evidence and identify gaps in knowledge which justify further research
Rare predicted loss-of-function variants of type I IFN immunity genes are associated with life-threatening COVID-19
Background: We previously reported that impaired type I IFN activity, due to inborn errors of TLR3- and TLR7-dependent type I interferon (IFN) immunity or to autoantibodies against type I IFN, account for 15–20% of cases of life-threatening COVID-19 in unvaccinated patients. Therefore, the determinants of life-threatening COVID-19 remain to be identified in ~ 80% of cases. Methods: We report here a genome-wide rare variant burden association analysis in 3269 unvaccinated patients with life-threatening COVID-19, and 1373 unvaccinated SARS-CoV-2-infected individuals without pneumonia. Among the 928 patients tested for autoantibodies against type I IFN, a quarter (234) were positive and were excluded. Results: No gene reached genome-wide significance. Under a recessive model, the most significant gene with at-risk variants was TLR7, with an OR of 27.68 (95%CI 1.5–528.7, P = 1.1 × 10−4) for biochemically loss-of-function (bLOF) variants. We replicated the enrichment in rare predicted LOF (pLOF) variants at 13 influenza susceptibility loci involved in TLR3-dependent type I IFN immunity (OR = 3.70[95%CI 1.3–8.2], P = 2.1 × 10−4). This enrichment was further strengthened by (1) adding the recently reported TYK2 and TLR7 COVID-19 loci, particularly under a recessive model (OR = 19.65[95%CI 2.1–2635.4], P = 3.4 × 10−3), and (2) considering as pLOF branchpoint variants with potentially strong impacts on splicing among the 15 loci (OR = 4.40[9%CI 2.3–8.4], P = 7.7 × 10−8). Finally, the patients with pLOF/bLOF variants at these 15 loci were significantly younger (mean age [SD] = 43.3 [20.3] years) than the other patients (56.0 [17.3] years; P = 1.68 × 10−5). Conclusions: Rare variants of TLR3- and TLR7-dependent type I IFN immunity genes can underlie life-threatening COVID-19, particularly with recessive inheritance, in patients under 60 years old
- …