10,529 research outputs found

    A model for retention on short, intermediate and long time-scale in ferroelectric thin films

    Full text link
    We developed a model with no adjustable parameter for retention loss at short and long time scale in ferroelectric thin-film capacitors. We found that the predictions of this model are in good agreement with the experimental observations in the literature. In particular, it explains why a power-law function shows better fitting than a linear-log relation on a short time scale (10^-7 s to 1 s) and why a stretched exponential relation gives more precise description than a linear-log plot on a long time scale (>100 s), as reported by many researchers in the past. More severe retention losses at higher temperatures and in thinner films have also been correctly predicted by the present theory.Comment: 15 pages and 3 figure

    Unipolar and bipolar fatigue in antiferroelectric lead zirconate thin films and evidences for switching-induced charge injection inducing fatigue

    Full text link
    For the first time, we show that unipolar fatigue does occur in antiferroelectric capacitors, confirming the predictions of a previous work [Appl. Phys. Lett., 94, 072901 (2009)]. We also show that unipolar fatigue in antiferroelectrics is less severe than bipolar fatigue if the driving field is of the same magnitude. This phenomenon has been attributed to the switching-induced charge injection, the main cause for polarization fatigue in ferroelectric and antiferroelectric materials. Other evidences for polarization fatigue caused by the switching-induced charge injection from the nearby electrode rather than the charge injection during stable/quasi-stable leakage current stage are also discussed.Comment: 10 pages and 2 figure

    Statistical switching kinetics in ferroelectrics

    Full text link
    By assuming a more realistic nucleation and polarization reversal scenario we build a new statistical switching model for ferroelectrics, which is different from either the Kolmogorov-Avrami-Ishibashi (KAI) model or the Nucleation-Limited-Switching (NLS) model. After incorporating a time-dependent depolarization field this model gives a good description about the retardation behavior in polycrystalline thin films at medium or low fields, which can not be described by the traditional KAI model. This model predicts correctly n=1 for polycrystalline thin films at high Eappl or ceramic bulks in the ideal case

    Phase Separation of Bismuth Ferrite into Magnetite under Voltage Stressing

    Full text link
    Micro-Raman studies show that under ~700 kV/cm of d.c. voltage stressing for a few seconds, thin-film bismuth ferrite BiFeO3 phase separates into magnetite Fe3O4. No evidence is found spectroscopically of hemite alpha-Fe2O3, maghemite gamma-Fe2O3, or of Bi2O3. This relates to the controversy regarding the magnitude of magnetization in BiFeO3.Comment: 9 pages and 2 figure

    Effect of manganese doping on the size effect of lead zirconate titanate thin films and the extrinsic nature of dead layers

    Full text link
    We have investigated the size effect in lead zirconate titanate (PZT) thin films with a range of manganese (Mn) doping concentrations. We found that the size effect in the conventional Pt/PZT/Pt thin-film capacitors could be systematically reduced and almost completely eliminated by increasing Mn doping concentration. The interfacial layer at the electrode-film interface appears to disappear almost entirely for the PZT films with 2% Mn doping levels, confirmed by the fits using the conventional in-series capacitor model. Our work indicates that the size effect in ferroelectrics is extrinsic in nature, supporting the work by Saad et al. Other implications of our results have also been discussed. By comparing a variety of experimental studies in the literature we propose a scenario that the dead layer between PZT (or barium strontium titanate, BST) and metal electrodes such as Pt and Au might have a defective pyrochlore/fluorite structure (possibly with a small portion of ferroelectric perovskite phase).Comment: 21 pages, 6 figure

    Spin injection from the Heusler alloy Co_2MnGe into Al_0.1Ga_0.9As/GaAs heterostructures

    Full text link
    Electrical spin injection from the Heusler alloy Co_2MnGe into a p-i-n Al_0.1Ga_0.9As/GaAs light emitting diode is demonstrated. A maximum steady-state spin polarization of approximately 13% at 2 K is measured in two types of heterostructures. The injected spin polarization at 2 K is calculated to be 27% based on a calibration of the spin detector using Hanle effect measurements. Although the dependence on electrical bias conditions is qualitatively similar to Fe-based spin injection devices of the same design, the spin polarization injected from Co_2MnGe decays more rapidly with increasing temperature.Comment: 8 pages, 4 figure

    Distribution of Spectral Lags in Gamma Ray Bursts

    Full text link
    Using the data acquired in the Time To Spill (TTS) mode for long gamma-ray bursts (GRBs) collected by the Burst and Transient Source Experiment on board the Compton Gamma Ray Observatory (BATSE/CGRO), we have carefully measured spectral lags in time between the low (25-55 keV) and high (110-320 keV) energy bands of individual pulses contained in 64 multi-peak GRBs. We find that the temporal lead by higher-energy gamma-ray photons (i.e., positive lags) is the norm in this selected sample set of long GRBs. While relatively few in number, some pulses of several long GRBs do show negative lags. This distribution of spectral lags in long GRBs is in contrast to that in short GRBs. This apparent difference poses challenges and constraints on the physical mechanism(s) of producing long and short GRBs. The relation between the pulse peak count rates and the spectral lags is also examined. Observationally, there seems to be no clear evidence for systematic spectral lag-luminosity connection for pulses within a given long GRB.Comment: 20 pages, 4 figure

    Electrical Detection of Spin Accumulation at a Ferromagnet-Semiconductor Interface

    Full text link
    We show that the accumulation of spin-polarized electrons at a forward-biased Schottky tunnel barrier between Fe and n-GaAs can be detected electrically. The spin accumulation leads to an additional voltage drop across the barrier that is suppressed by a small transverse magnetic field, which depolarizes the spins in the semiconductor. The dependence of the electrical accumulation signal on magnetic field, bias current, and temperature is in good agreement with the predictions of a drift-diffusion model for spin-polarized transport.Comment: Submitted to Phys. Rev. Let
    corecore