9,873 research outputs found
Coupled KdV equations derived from atmospherical dynamics
Some types of coupled Korteweg de-Vries (KdV) equations are derived from an
atmospheric dynamical system. In the derivation procedure, an unreasonable
-average trick (which is usually adopted in literature) is removed. The
derived models are classified via Painlev\'e test. Three types of
-function solutions and multiple soliton solutions of the models are
explicitly given by means of the exact solutions of the usual KdV equation. It
is also interesting that for a non-Painlev\'e integrable coupled KdV system
there may be multiple soliton solutions.Comment: 19 pages, 2 figure
Determination of Wave Function Functionals: The Constrained-Search--Variational Method
In a recent paper [Phys. Rev. Lett. \textbf{93}, 130401 (2004)], we proposed
the idea of expanding the space of variations in variational calculations of
the energy by considering the approximate wave function to be a
functional of functions rather than a function. The
space of variations is expanded because a search over the functions can
in principle lead to the true wave function. As the space of such variations is
large, we proposed the constrained-search-- variational method whereby a
constrained search is first performed over all functions such that the
wave function functional satisfies a physical constraint such as
normalization or the Fermi-Coulomb hole sum rule, or leads to the known value
of an observable such as the diamagnetic susceptibility, nuclear magnetic
constant or Fermi contact term. A rigorous upper bound to the energy is then
obtained by application of the variational principle. A key attribute of the
method is that the wave function functional is accurate throughout space, in
contrast to the standard variational method for which the wave function is
accurate only in those regions of space contributing principally to the energy.
In this paper we generalize the equations of the method to the determination of
arbitrary Hermitian single-particle operators as applied to two-electron atomic
and ionic systems. The description is general and applicable to both ground and
excited states. A discussion on excited states in conjunction with the theorem
of Theophilou is provided.Comment: 26 pages, 4 figures, 5 table
Global axisymmetric stability analysis for a composite system of two gravitationally coupled scale-free discs
In a composite system of gravitationally coupled stellar and gaseous discs,
we perform linear stability analysis for axisymmetric coplanar perturbations
using the two-fluid formalism. The background stellar and gaseous discs are
taken to be scale-free with all physical variables varying as powers of
cylindrical radius with compatible exponents. The unstable modes set in as
neutral modes or stationary perturbation configurations with angular frequency
.Comment: 7 pages using AAS styl
Optical and electrical spin injection and spin transport in hybrid Fe/GaAs devices
We discuss methods for imaging the nonequilibrium spin polarization of
electrons in Fe/GaAs spin transport devices. Both optically- and
electrically-injected spin distributions are studied by scanning
magneto-optical Kerr rotation microscopy. Related methods are used to
demonstrate electrical spin detection of optically-injected spin polarized
currents. Dynamical properties of spin transport are inferred from studies
based on the Hanle effect, and the influence of strain on spin transport data
in these devices is discussed.Comment: 5 pages, 6 figs. ICPS-28 proceedings (July'06, Vienna) for J. Appl.
Phy
New variable separation approach: application to nonlinear diffusion equations
The concept of the derivative-dependent functional separable solution, as a
generalization to the functional separable solution, is proposed. As an
application, it is used to discuss the generalized nonlinear diffusion
equations based on the generalized conditional symmetry approach. As a
consequence, a complete list of canonical forms for such equations which admit
the derivative-dependent functional separable solutions is obtained and some
exact solutions to the resulting equations are described.Comment: 19 pages, 2 fig
How to observe the Efimov effect
We propose to observe the Efimov effect experimentally by applying an
external electric field on atomic three-body systems. We first derive the
lowest order effective two-body interaction for two spin zero atoms in the
field. Then we solve the three-body problem and search for the extreme
spatially extended Efimov states. We use helium trimers as an illustrative
numerical example and estimate the necessary field strength to be less than 2.7
V/angstrom.Comment: 4 pages, 2 postscript figures, psfig.sty, revte
Electron Spin Dynamics and Hyperfine Interactions in Fe/Al_0.1Ga_0.9As/GaAs Spin Injection Heterostructures
We have studied hyperfine interactions between spin-polarized electrons and
lattice nuclei in Al_0.1Ga_0.9As/GaAs quantum well (QW) heterostructures. The
spin-polarized electrons are electrically injected into the semiconductor
heterostructure from a metallic ferromagnet across a Schottky tunnel barrier.
The spin-polarized electron current dynamically polarizes the nuclei in the QW,
and the polarized nuclei in turn alter the electron spin dynamics. The
steady-state electron spin is detected via the circular polarization of the
emitted electroluminescence. The nuclear polarization and electron spin
dynamics are accurately modeled using the formalism of optical orientation in
GaAs. The nuclear spin polarization in the QW is found to depend strongly on
the electron spin polarization in the QW, but only weakly on the electron
density in the QW. We are able to observe nuclear magnetic resonance (NMR) at
low applied magnetic fields on the order of a few hundred Oe by electrically
modulating the spin injected into the QW. The electrically driven NMR
demonstrates explicitly the existence of a Knight field felt by the nuclei due
to the electron spin.Comment: 19 Figures - submitted to PR
Ultrafast Hole Trapping and Relaxation Dynamics in p-Type CuS Nanodisks
CuS nanocrystals are potential materials for developing low-cost solar energy conversion devices. Understanding the underlying dynamics of photoinduced carriers in CuS nanocrystals is essential to improve their performance in these devices. In this work, we investigated the photoinduced hole dynamics in CuS nanodisks (NDs) using the combination of transient optical (OTA) and X-ray (XTA) absorption spectroscopy. OTA results show that the broad transient absorption in the visible region is attributed to the photoinduced hot and trapped holes. The hole trapping process occurs on a subpicosecond time scale, followed by carrier recombination (~100 ps). The nature of the hole trapping sites, revealed by XTA, is characteristic of S or organic ligands on the surface of CuS NDs. These results not only suggest the possibility to control the hole dynamics by tuning the surface chemistry of CuS but also represent the first time observation of hole dynamics in semiconductor nanocrystals using XTA
Selfsimilar solutions in a sector for a quasilinear parabolic equation
We study a two-point free boundary problem in a sector for a quasilinear
parabolic equation. The boundary conditions are assumed to be spatially and
temporally "self-similar" in a special way. We prove the existence, uniqueness
and asymptotic stability of an expanding solution which is self-similar at
discrete times. We also study the existence and uniqueness of a shrinking
solution which is self-similar at discrete times.Comment: 23 page
- …