9 research outputs found
Insights into Hydration Dynamics and Cooperative Interactions in Glycerol-Water Mixtures by Terahertz Dielectric Spectroscopy.
We report relaxation dynamics of glycerol-water mixtures as probed by megahertz-to-terahertz dielectric spectroscopy in a frequency range from 50 MHz to 0.5 THz at room temperature. The dielectric relaxation spectra reveal several polarization processes at the molecular level with different time constants and dielectric strengths, providing an understanding of the hydrogen-bonding network in glycerol-water mixtures. We have determined the structure of hydration shells around glycerol molecules and the dynamics of bound water as a function of glycerol concentration in solutions using the Debye relaxation model. The experimental results show the existence of a critical glycerol concentration of âŒ7.5 mol %, which is related to the number of water molecules in the hydration layer around a glycerol molecule. At higher glycerol concentrations, water molecules dispersed in a glycerol network become abundant and eventually dominate, and four distinct relaxation processes emerge in the mixtures. The relaxation dynamics and hydration structure in glycerol-water mixtures are further probed with molecular dynamics simulations, which confirm the physical picture revealed by the dielectric spectroscopy
Interfacial Layers between Ion and Water Detected by Terahertz Spectroscopy
Dynamic fluctuations in hydrogen-bond network of water occur from femto- to
nano-second timescale and provides insights into structural/dynamical aspects
of water at ion-water interfaces. Employing terahertz spectroscopy assisted
with molecular dynamics simulations, we study aqueous chloride solutions of
five monovalent cations, namely, Li, Na, K, Rb and Cs. We show that ions modify
the behavior of surrounding water molecules and form interfacial layers of
water around them with physical properties distinct from that of bulk water.
Small cations with high charge densities influence the kinetics of water well
beyond the first solvation shell. At terahertz frequencies, we observe an
emergence of fast relaxation processes of water with their magnitude following
the ionic order Cs>Rb>K>Na>Li, revealing an enhanced population density of
weakly coordinated water at ion-water interface. The results shed light on the
structure breaking tendency of monovalent cations and provide insights into the
properties of ionic solutions at the molecular level
Recommended from our members
Insights into Hydration Dynamics and Cooperative Interactions in Glycerol-Water Mixtures by Terahertz Dielectric Spectroscopy.
We report relaxation dynamics of glycerol-water mixtures as probed by megahertz-to-terahertz dielectric spectroscopy in a frequency range from 50 MHz to 0.5 THz at room temperature. The dielectric relaxation spectra reveal several polarization processes at the molecular level with different time constants and dielectric strengths, providing an understanding of the hydrogen-bonding network in glycerol-water mixtures. We have determined the structure of hydration shells around glycerol molecules and the dynamics of bound water as a function of glycerol concentration in solutions using the Debye relaxation model. The experimental results show the existence of a critical glycerol concentration of âŒ7.5 mol %, which is related to the number of water molecules in the hydration layer around a glycerol molecule. At higher glycerol concentrations, water molecules dispersed in a glycerol network become abundant and eventually dominate, and four distinct relaxation processes emerge in the mixtures. The relaxation dynamics and hydration structure in glycerol-water mixtures are further probed with molecular dynamics simulations, which confirm the physical picture revealed by the dielectric spectroscopy
Recommended from our members
ThinâFilm Ferroelectrics
Over the last 30 years, the study of ferroelectric oxides has been revolutionized by the implementation of epitaxial-thin-film-based studies, which have driven many advances in the understanding of ferroelectric physics and the realization of novel polar structures and functionalities. New questions have motivated the development of advanced synthesis, characterization, and simulations of epitaxial thin films and, in turn, have provided new insights and applications across the micro-, meso-, and macroscopic length scales. This review traces the evolution of ferroelectric thin-film research through the early days developing understanding of the roles of size and strain on ferroelectrics to the present day, where such understanding is used to create complex hierarchical domain structures, novel polar topologies, and controlled chemical and defect profiles. The extension of epitaxial techniques, coupled with advances in high-throughput simulations, now stands to accelerate the discovery and study of new ferroelectric materials. Coming hand-in-hand with these new materials is new understanding and control of ferroelectric functionalities. Today, researchers are actively working to apply these lessons in a number of applications, including novel memory and logic architectures, as well as a host of energy conversion devices
Recommended from our members
Tunable Artificial Relaxor Behavior in [BaTiO3]m/[BaZrO3]n Superlattices
[BaTiO_{3}]_{m}/[BaZrO_{3}]_{n} (m, n=4-12) superlattices are used to demonstrate the fabrication and deterministic control of an artificial relaxor. X-ray diffraction and atomic-resolution imaging studies confirm the production of high-quality heterostructures. With decreasing BaTiO_{3} layer thickness, dielectric measurements reveal systematically lower dielectric-maximum temperatures, while hysteresis loops and third-harmonic nonlinearity studies suggest a transition from ferroelectriclike to relaxorlike behavior driven by tuning the random-field strength. This system provides a novel platform for studying the size effect and interaction length scale of the nanoscale-polar structures in relaxors