4,897 research outputs found
Modeling the Initial Conditions of Interacting Galaxy Pairs Using Identikit
We develop and test an automated technique to model the dynamics of
interacting galaxy pairs. We use Identikit (Barnes & Hibbard 2009, Barnes 2011)
as a tool for modeling and matching the morphology and kinematics of the
interacting pairs of equal-mass galaxies. In order to reduce the effect of
subjective human judgement, we automate the selection of phase-space regions
used to match simulations to data, and we explore how selection of these
regions affects the random uncertainties of parameters in the best-fit model.
In this work, we use an independent set of GADGET SPH simulations as input data
to determine the systematic bias in the measured encounter parameters based on
the known initial conditions of these simulations. We test both cold gas and
young stellar components in the GADGET simulations to explore the effect of
choosing HI vs. H as the line of sight velocity tracer. We find that we
can group the results into tests with good, fair, and poor convergence based on
the distribution of parameters of models close to the best-fit model. For tests
with good and fair convergence, we rule out large fractions of parameter space
and recover merger stage, eccentricity, pericentric distance, viewing angle,
and initial disc orientations within 3 of the correct value. All of
tests on prograde-prograde systems have either good or fair convergence. The
results of tests on edge-on discs are less biased than face-on tests.
Retrograde and polar systems do not converge and may require constraints from
regions other than the tidal tails and bridges.Comment: 18 pages, 13 figures, 3 Tables, Accepted for publication in MNRA
The Globular Cluster Luminosity Function and Specific Frequency in Dwarf Elliptical Galaxies
The globular cluster luminosity function, specific globular cluster
frequency, S_N, specific globular cluster mass, T_MP, and globular cluster mass
fraction in dwarf elliptical galaxies are explored using the full 69 galaxy
sample of the HST WFPC2 Dwarf Elliptical Galaxy Snapshot Survey. The GCLFs of
the dEs are well-represented with a t_5 function with a peak at
M_{V,Z}^0(dE,HST) = -7.3 +/- 0.1. This is ~0.3 magnitudes fainter than the GCLF
peaks in giant spiral and elliptical galaxies, but the results are consistent
within the uncertainties. The bright-end slope of the luminosity distribution
has a power-law form with slope alpha = -1.9 +/- 0.1. The trend of increasing
S_N or T_MP with decreasing host galaxy luminosity is confirmed. The mean value
for T_MP in dE,N galaxies is about a factor of two higher than the mean value
for non-nucleated galaxies and the distributions of T_MP in dE,N and dE,noN
galaxies are statistically different. These data are combined with results from
the literature for a wide range of galaxy types and environments. At low host
galaxy masses the distribution of T_MP for dE,noN and dI galaxies are similar.
This supports the idea that one pathway for forming dE,noN galaxies is by the
stripping of dIs. The formation of nuclei and the larger values of T_MP in dE,N
galaxies may be due to higher star formation rates and star cluster formation
efficiencies due to interactions in galaxy cluster environments.Comment: 53 pages, 13 figures, 12 tables, accepted by the Astrophysical
Journa
New Image Statistics for Detecting Disturbed Galaxy Morphologies at High Redshift
Testing theories of hierarchical structure formation requires estimating the
distribution of galaxy morphologies and its change with redshift. One aspect of
this investigation involves identifying galaxies with disturbed morphologies
(e.g., merging galaxies). This is often done by summarizing galaxy images
using, e.g., the CAS and Gini-M20 statistics of Conselice (2003) and Lotz et
al. (2004), respectively, and associating particular statistic values with
disturbance. We introduce three statistics that enhance detection of disturbed
morphologies at high-redshift (z ~ 2): the multi-mode (M), intensity (I), and
deviation (D) statistics. We show their effectiveness by training a
machine-learning classifier, random forest, using 1,639 galaxies observed in
the H band by the Hubble Space Telescope WFC3, galaxies that had been
previously classified by eye by the CANDELS collaboration (Grogin et al. 2011,
Koekemoer et al. 2011). We find that the MID statistics (and the A statistic of
Conselice 2003) are the most useful for identifying disturbed morphologies.
We also explore whether human annotators are useful for identifying disturbed
morphologies. We demonstrate that they show limited ability to detect
disturbance at high redshift, and that increasing their number beyond
approximately 10 does not provably yield better classification performance. We
propose a simulation-based model-fitting algorithm that mitigates these issues
by bypassing annotation.Comment: 15 pages, 14 figures, accepted for publication in MNRA
Star Clusters in Virgo and Fornax Dwarf Irregular Galaxies
We present the results of a search for clusters in dwarf irregular galaxies
in the Virgo and Fornax Cluster using HST WFPC2 snapshot data. The galaxy
sample includes 28 galaxies, 11 of which are confirmed members of the Virgo and
Fornax clusters. In the 11 confirmed members, we detect 237 cluster candidates
and determine their V magnitudes, V-I colors and core radii. After statistical
subtraction of background galaxies and foreground stars, most of the cluster
candidates have V-I colors of -0.2 and 1.4, V magnitudes lying between 20 and
25th magnitude and core radii between 0 and 6 pc. Using H-alpha observations,
we find that 26% of the blue cluster candidates are most likely HII regions.
The rest of the cluster candidates are most likely massive (>10^4 Msol) young
and old clusters. A comparison between the red cluster candidates in our sample
and the Milky Way globular clusters shows that they have similar luminosity
distributions, but that the red cluster candidates typically have larger core
radii. Assuming that the red cluster candidates are in fact globular clusters,
we derive specific frequencies (S_N) ranging from ~0-9 for the galaxies.
Although the values are uncertain, seven of the galaxies appear to have
specific frequencies greater than 2. These values are more typical of
ellipticals and nucleated dwarf ellipticals than they are of spirals or Local
Group dwarf irregulars.Comment: 46 pages, 14 figures, 3 tables, accepted by AJ. Higher quality PS
version of entire paper available at
http://www.astro.washington.edu/seth/dirr_gcs.htm
The Specific Globular Cluster Frequencies of Dwarf Elliptical Galaxies from the Hubble Space Telescope
The specific globular cluster frequencies (S_N) for 24 dwarf elliptical (dE)
galaxies in the Virgo and Fornax Clusters and the Leo Group imaged with the
Hubble Space Telescope are presented. Combining all available data, we find
that for nucleated dEs --- which are spatially distributed like giant
ellipticals in galaxy clusters --- S_N(dE,N)=6.5 +- 1.2 and S_N increases with
M_V, while for non-nucleated dEs --- which are distributed like late-type
galaxies --- S_N(dE,noN)=3.1 +- 0.5 and there is little or no trend with M_V.
The S_N values for dE galaxies are thus on average significantly higher than
those for late-type galaxies, which have S_N < 1. This suggests that dE
galaxies are more akin to giant Es than to late-type galaxies. If there are
dormant or stripped irregulars hiding among the dE population, they are likely
to be among the non-nucleated dEs. Furthermore, the similarities in the
properties of the globular clusters and in the spatial distributions of dE,Ns
and giant Es suggest that neither galaxy mass or galaxy metallicity is
responsible for high values of S_N. Instead, most metal-poor GCs may have
formed in dwarf-sized fragments that merged into larger galaxies.Comment: 12 pages (uses aaspp4.sty), 2 figures, 1 table, to appear in the
Astrophysical Journa
- …
