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ABSTRACT
Testing theories of hierarchical structure formation requires estimating the distribution of
galaxy morphologies and its change with redshift. One aspect of this investigation involves
identifying galaxies with disturbed morphologies (e.g. merging galaxies). This is often done
by summarizing galaxy images using, e.g. the concentration, asymmetry and clumpiness and
Gini-M20 statistics of Conselice and Lotz et al., respectively, and associating particular statistic
values with disturbance. We introduce three statistics that enhance detection of disturbed
morphologies at high redshift (z ∼ 2): the multimode (M), intensity (I) and deviation (D)
statistics. We show their effectiveness by training a machine-learning classifier, random forest,
using 1639 galaxies observed in the H band by the Hubble Space Telescope WFC3, galaxies
that had been previously classified by eye by the Cosmic Assembly Near-IR Deep Extragalactic
Legacy Survey collaboration. We find that the MID statistics (and the A statistic of Conselice)
are the most useful for identifying disturbed morphologies.

We also explore whether human annotators are useful for identifying disturbed morpholo-
gies. We demonstrate that they show limited ability to detect disturbance at high redshift, and
that increasing their number beyond ≈10 does not provably yield better classification perfor-
mance. We propose a simulation-based model-fitting algorithm that mitigates these issues by
bypassing annotation.

Key words: methods: data analysis – methods: statistical – galaxies: evolution – galaxies: fun-
damental parameters – galaxies: high-redshift – galaxies: statistics – galaxies: structure.

1 IN T RO D U C T I O N

A thorough investigation of cosmological theories of hierarchical
structure formation requires an accurate and precise estimate of the
distribution of observed galaxy morphologies and how it varies as a
function of redshift. One may attack this problem from a number of
angles, including determining the galaxy (major and minor) merger
fraction at a range of redshifts. Current estimates of the merger
fraction at redshifts z ≤ 1.4 vary widely, from ∼0.01 to ∼0.1 (see,
e.g. Lotz et al. 2011, and references therein), with quoted errors
≈0.01–0.03; at higher redshifts up to z ∼ 3, merger fraction esti-
mates rise to as high as 0.4 (e.g. Conselice et al. 2003; Conselice,
Rajgor & Myers 2008; Bluck et al. 2012). Theory offers little guid-
ance for resolving discrepancies among analyses: while the dark

� E-mail: pfreeman@cmu.edu

matter halo–halo merger fraction has been estimated consistently
via simulations, uncertainty in the physical processes linking haloes
to underlying galaxies currently precludes consistent estimation of
the galaxy merger fraction (e.g. Bertone & Conselice 2009; Jogee
et al. 2009; Hopkins et al. 2010).

As stated in, e.g. Lotz et al. (2011), post-merger morphologies
are sufficiently ambiguous that we cannot use local galaxies as an
accurate tracer of the merger fraction and its evolution. Even if all
merger events did result in the formation of spheroidal galaxies, the
converse is not true: not all spheroidal galaxies arise from mergers.
Thus, to estimate the merger fraction and its evolution, we must
seek out ongoing mergers themselves. High-redshift merger sample
sizes range from the hundreds (e.g. Lotz et al. 2008; Jogee et al.
2009; Kartaltepe et al. 2010) to ≈1600 (Bridge, Carlberg & Sullivan
2010), a regime in which human-based analysis (i.e. annotation) is
feasible. However, on-going surveys such as the Cosmic Assembly
Near-IR Deep Extragalactic Legacy Survey (CANDELS; Grogin
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et al. 2011; Koekemoer et al. 2011) will increase the number of
putative mergers to the tens of thousands.

One approach to inferring merger activity involves detecting dis-
turbed morphologies within individual galaxies. Ideally, they would
manifest themselves either as separate classes or as outliers within
the evolving distribution of galaxy shapes, a distribution that we
would estimate directly from an adequately large set of galaxy
images. However, the direct use of galaxy images is both statisti-
cally and computationally intractable. Thus, we instead transform
inherently high-dimensional (i.e. multipixel) images into a lower
dimensional representations that retain important morphological in-
formation, and we use them to estimate discrete classes: early-type
galaxies versus late-type galaxies, mergers versus non-mergers, etc.

Human annotators perform dimension reduction and discretiza-
tion implicitly (e.g. Lintott et al. 2008; Bridge et al. 2010; Darg et al.
2010; Kartaltepe et al. 2010), but labelling galaxies is time consum-
ing both in terms of infrastructure development and implementation.
(Also, the inferential accuracy achieved by using many non-expert
annotators – i.e. by crowdsourcing – versus that achieved by a
smaller set of experts is an as-yet unresolved issue.) The main alter-
native to large-scale human labelling is to extract low-dimensional
summary statistics (or features) from galaxy images, then to use
the statistics and labels associated with a small subset of images
to train a computer-based classifier. Of course, the effectiveness of
this approach hinges upon how well we actually retain important
morphological information when transforming image data, i.e. on
whether we define an appropriate set of statistics.

There are a myriad of statistics that one may extract from image
data. Common ones include the Sérsic index and bulge-to-disc ratio
(found, e.g. using GALFIT; Peng et al. 2002). However, for our partic-
ular case of interest – detecting complex substructures in images of
peculiar and irregular galaxies – statistics that do not require model
fitting are clearly optimal. Such statistics include the concentration,
asymmetry and clumpiness (CAS) statistics (e.g. Bershady, Jangren
& Conselice 2000; Conselice 2003, hereafter C03), and the Gini
(G) and M20 statistics (Abraham, van den Bergh & Nair 2003; Lotz,
Primack & Madau 2004, hereafter L04).1 Numerous authors apply
these statistics; recent examples include Chen, Lowenthal & Yun
(2010), Kutdemir et al. (2010), Lotz et al. (2010a,b), Conselice
et al. (2011), Holwerda et al. (2011), Mendez et al. (2011) and
Hoyos et al. (2012).

Given this context, there are three outstanding issues in galaxy
morphology analysis that we address in this work.

(i) The efficacy of the CAS and GM20 statistics for detecting
disturbed morphologies degrades as galaxy signal-to-noise (S/N)
and size decrease, i.e. as redshift increases (see, e.g. figs 9 and
19 of Conselice, Bershady & Jangren 2000, figs 5–6 of L04, and
Lisker 2008). In Section 2, we define three new statistics [which we
dub the multimode (M), intensity (I) and deviation (D) statistics]
that improve our ability to collectively detect peculiar and irregular
galaxies (which we dub non-regulars) as well as to detect merging2

systems themselves. In Section 4, we apply these statistics to the
analysis of 1639 high-redshift (z ∼ 2) galaxies in the Great Ob-
servatories Origins Deep Survey-South (GOODS-S) Early Release

1 We also note the multiplicity statistic � of Law et al. (2007), which we do
not apply in this work.
2 Note that by ‘merging,’ we mean ‘merging and/or interacting.’ We down-
play the explicit detection of interaction because we currently only analyse
each galaxy in isolation, without regard to possible nearby galaxies, which
clearly impedes our ability to detect interacting galaxies.

Science field (Windhorst et al. 2011), observed in the near-infrared
regime by the Wide-Field Camera 3 (WFC3) on-board the Hubble
Space Telescope (HST).3

(ii) Authors generally apply the CAS and GM20 in a non-optimal
manner, by projecting high-dimensional spaces containing values
for each observed galaxy down to two-dimensional planes (e.g.
G−M20) and delineating classes by eye. In Section 3, we introduce
the use of random forest, a machine-learning-based classifier that
one can directly apply to high-dimensional spaces of image statis-
tics, to morphological analysis. Ultimately, for analysis of large data
sets, one would use random forest to train a classifier on a small
subset of labelled galaxies, then apply it to the unlabelled galaxies.

(iii) What is the contribution of annotators and their biases to
the overall error budget in morphological analyses? For instance,
the fact that widely varying merger fraction estimates are generally
associated with small error bars indicates clearly the presence of (as
yet unmodelled) systematic errors. These errors (such as that asso-
ciated with the inability of various authors to agree on what defines
a merger) may ultimately doom those morphological analyses in
which humans play a role. In Section 5, we first examine whether
it is always beneficial to have more annotators look at each galaxy
image, then ask whether it is even necessary to invoke annotation
if our ultimate goal is to constrain models of hierarchical structure
formation.

In Section 6, we summarize our results and discuss future research
directions.

2 TH E MID STATISTICS

Let fi, j denote the observed flux at pixel (i, j) of a given image that
has n = nx × ny pixels overall. We assume that associated with the
image is a segmentation map that defines the extent of the object
of interest, such as is output by e.g. the source detection package
SEXTRACTOR (Bertin & Arnouts 1996).

2.1 Multimode (M) statistic

Let ql denote an intensity quantile; for instance, q0.8 denotes an
intensity value such that 80 per cent of the pixel intensities inside
the segmentation map are smaller than this value. For a given value
of l, we examine image pixels and define a new image

gi,j =
{

1 fi,j ≥ ql

0 otherwise
.

See Fig. 1. This image will be mostly 0, with m groups of con-
tiguous pixels of value 1 where the galaxy intensity is largest. We
determine the number of pixels Al, m in each group and order them in
descending order (i.e. Al, (1) is the largest group of contiguous pixels
for quantile l, Al, (2) is the second-largest group, etc.). We define the
area ratio for each quantile as

Rl = Al,(2)

Al,(1)
Al,(2) . (1)

This statistic is suited for detecting double nuclei within the seg-
mentation map, as the ratio Al, (2)/Al, (1) tends towards 1 if double

3 We note that statistics such as C and S were not developed for detecting
merging galaxies, per se. However, as is shown in Section 4, including them
in our analyses does not adversely affect the performance of our classification
algorithm.

 at C
arnegie M

ellon U
niversity on February 28, 2014

http://m
nras.oxfordjournals.org/

D
ow

nloaded from
 

http://mnras.oxfordjournals.org/
http://mnras.oxfordjournals.org/


284 P. E. Freeman et al.

Figure 1. Example of pixel grouping for computing the multimode (M)
statistic. To the left we display the H-band pixel intensities for an example
of a merger galaxy (see Fig. 3), while to the right we show only those pixels
associated with the largest 5.8 per cent of the sorted intensity values. The
two pixel regions have areas A(1) = 21 and A(2) = 14, so that R0.942 =
(14/21) × 14 = 9.33. The M statistic is the largest of the R values computed
for a sufficiently large number of threshold percentiles.

nuclei are present, and towards 0 if not. Because this ratio is sensi-
tive to noise, we multiply it by Al, (2), which tends towards 0 if the
second-largest group is a manifestation of noise. The M statistic is
the maximum Rl value, i.e.

M = max
l

Rl . (2)

2.2 Intensity (I) statistic

The M statistic is a function of the footprint areas of non-contiguous
groups of image pixels, but does not take into account pixel inten-
sities. To complement it, we define a similar statistic, the intensity
or I statistic. A readily apparent, simple definition of this statistic is
the ratio of the sums of intensities in the two pixel groups used to
compute M. However, this is not optimal, as in any given image it is
possible, e.g. that a high-intensity pixel group with small footprint
may not enter into the computation of M in the first place.

There are myriad ways in which one can define pixel groups over
which to sum intensities. In this work, we utilize a two-pronged
approach. First, we smooth the data in each image with a sym-
metric bivariate Gaussian kernel, selecting the optimal width σ by
maximizing the relative importance of the I statistic in correctly
identifying morphologies (i.e. how well we can differentiate classes
using the I statistic alone, relative to how well we can differentiate
classes by using other statistics by themselves; see Section 3.3).
Then, we define groups using maximum gradient paths. For each
pixel in the smoothed image, we examine the surrounding eight
pixels and move to the one for which the increase in intensity is
maximized, repeating the process until we reach a local maximum.
A single group consists of all pixels linked to a particular local
maximum. (See Fig. 2.) Once we define all pixel groups, we sum
the intensities within each and sort the summed intensities in de-
scending order: I(1), I(2),.... The intensity statistic is then

I = I(2)

I(1)
. (3)

2.3 Deviation (D) statistic

Galaxies that are clearly irregular or peculiar will exhibit marked
deviations from elliptical symmetry. A simple measure quantifying
this deviation is the distance from a galaxy’s intensity centroid
to the local maximum associated with I(1), the pixel group with
maximum summed intensity. We expect this quantity to cluster near
zero for spheroidal and disc galaxies. For those disc galaxies with
well-defined bars and/or spiral arms, we would still expect near-
zero values, as between the bulge and generally expected structure

Figure 2. Example of pixel grouping for computing the intensity (I) statis-
tic. To the left we display pixel intensities for an example of a merger galaxy
(see Fig. 3). These data are smoothed using a symmetric Gaussian kernel
of width σ = 1 pixel, a sufficiently small scale to remove local intensity
maxima caused by noise without removing local maxima intrinsic to the
galaxy itself. (See the text for details on how we select the appropriate
smoothing scale σ .) To the right we display pixel regions associated with
each local intensity maximum remaining after smoothing. Pixel intensities
are summed within each region, with the intensity statistic then being the
ratio of the second-largest to largest sum. In this example, the statistic is
I = 0.935.

symmetry, both the intensity centroid and the maximum associated
with I(1) should lie at the galaxy’s core.

We define the intensity centroid of a galaxy as

(xcen, ycen) =
⎛
⎝ 1

nseg

∑
i

∑
j

ifi,j ,
1

nseg

∑
i

∑
j

jfi,j

⎞
⎠ .

with the summation being overall nseg pixels with the segmentation
map. The distance from (xcen, ycen) to the maximum associated with
I(1) will be affected by the absolute size of the galaxy; it generally
will be larger for, e.g. galaxies at lower redshifts. Thus, we normalize
the distance using an approximate galaxy ‘radius,’

√
nseg/π. The

deviation statistic is then

D =
√

π

nseg

√
(xcen − xI(1) )

2 + (ycen − yI(1) )
2 . (4)

We have designed the D statistic to capture evidence of galaxy
asymmetry. It is thus complimentary to the A statistic defined in C03,
which is computed by rotating an image by 180◦, taking the absolute
difference between rotated and unrotated images, normalizing by
the value of the unrotated image, and summing the resulting values
pixel-by-pixel. In Section 4, we compute both A and D for a sample
of high-redshift galaxies and show that while there is a large positive
sample correlation coefficient between the two statistics, there are
many instances where D captures stronger evidence of asymmetry
than A, and vice-versa, demonstrating that D and A are not simply
redundant.

3 STAT I S T I C A L A NA LY S I S : R A N D O M FO R E S T

We use the MID (and other) statistics to populate a p-dimensional
space, where each axis represents the values of the ith statistic and
each data point represents one galaxy. Ideally, in this space, the set
of points representing, e.g. visually identified mergers is offset from
those representing non-mergers. To determine an optimal boundary
between these point sets directly in the n-dimensional space, we
apply machine-learning-based methods of regression and classifi-
cation. To ensure robust results, it is good practice to apply a number
of methods to see if any one or more provide significantly better
results. In our analysis of HST data in Section 4, we tested four al-
gorithms: random forest, lasso regression, support vector machines
and principal components regression (for details on these, see, e.g.
Hastie, Tibshirani & Friedman 2009, hereafter HTF09). We found
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that the results of applying each were similar: in the vast majority
of cases, galaxies were either classified correctly or incorrectly by
all four algorithms. Thus, in this work we describe only the con-
ceptually simplest of the four algorithms, random forest (Breiman
2001). For an example of an analysis code that uses random forest,
see Appendix A.

3.1 Random forest regression

The first step in applying random forest is a regression step: we
randomly sample 50 per cent of the galaxies (i.e. populate a training
set)4 and regress the fraction of annotators, Yi ∈ [0, 1], who view
galaxy i as a non-regular/merger upon that galaxy’s set of image
statistics. In random forest, bootstrap samples of the training set are
used to grow t trees (e.g. t = 500), each of which has n nodes (e.g.
n = 8). At each node in each tree, a random subset of size m of the
statistics is chosen (e.g. C, M20 and I may be chosen from the full
set of statistics). The best split of the data along each of the m axes
is determined, with the one overall best split retained. This process
is repeated for each node and each tree; subsequently the training
data are pushed down each tree to determine t class predictions for
each galaxy (i.e. to generate a set of t numbers for each galaxy, all
of which are either 0 or 1). Let si ∈ [0, t] equal the sum of the class
predictions for galaxy i; then the random forest prediction for the
galaxy’s classification is Ŷi = si/t .

While fitting the training data, random forest keeps track of all
t trees it creates, i.e. all of the data splits it performs. Thus, any
new datum (from the remaining 50 per cent of the data, or the test
set) may be ‘pushed’ down these trees, resulting again in t class
predictions and thus a predicted response (or dependent) variable
Ŷi = si/t .

3.2 Random forest classification

Once we predict response variables for the test set galaxies, we
perform the second step of random forest, the classification step.
First, the continuous fractions Yi associated with the test set galaxies
are mapped to Yclass, i = 0 if Yi < 0.5 and Yclass, i = 1 if Yi >

0.5. (Ties are broken by randomly assigning galaxies to classes.)
Then the predicted responses for the test set galaxies, Ŷi , are also
mapped to discrete classes. Intuitively, one might expect the splitting
point between predicted classes, c, to be 0.5. However, because
the proportions of regular and non-regular galaxies in the training
set are unequal, as are the proportions of non-merger and merger
galaxies, regression will be biased towards fitting the galaxies of the
more numerous type well. For instance, regular galaxies outnumber
non-regular galaxies by approximately three-to-one, so a priori we
expect the best value for c to be around 1/(3+1) = 0.25. To determine
c, we select a sequence of values {c1, c2, . . . , cn} ∈ [0, 1], and for
each cj we map the predicted responses to two classes, e.g. we call
all galaxies with predicted responses Ŷi > cj non-regulars/mergers.
Call this classifying function h(X, cj), where X is the set of observed
statistics. Our estimate of risk as a function of cj is the overall
proportion of misclassified galaxies:

R̂j = P̂ [h(X, cj ) = 0|Y = 1] + P̂ [h(X, cj ) = 1|Y = 0],

4 The size of the training set is arbitrary. Larger training sets generally yield
better final results. In this work, our principal goal is to demonstrate the
efficacy of the MID statistics relative to other, commonly used ones, and so
we do not explicitly address the issue of optimizing the training set size.

Table 1. Confusion matrix: definitions.

Predicted Predicted
regular/ non-regular/

non-merger merger

Actual TN FP
regular/ (True negatives) (False positives)

non-merger

Actual FN TP
non-regular/ (False negatives) (True positives)

merger

where P̂ [h(X, cj ) = 0|Y = 1] and P̂ [h(X, cj ) = 1|Y = 0] are the
estimated probabilities of misclassifying a non-regular/merger and
a regular/non-merger, respectively. We seek the minimum value for
this estimate of risk. We smooth the discrete function R̂j = f (cj )
with a Gaussian profile of width 0.05 and choose as our final value
of ĉ that value for which the smoothed function R̂(c) is minimized.5

3.3 Measures of classifier performance

We use a number of measures of classifier performance.

(i) Sensitivity. The proportion of non-regular/merger galaxies that
are correctly classified: TP/(TP + FN). (This is also dubbed com-
pleteness.)

(ii) Specificity. The proportion of regular/non-merger galaxies
that are correctly classified: TN/(TN + FP).

(iii) Estimated risk. The sum of 1 – sensitivity and 1 – specificity.
(iv) Total error. The proportion of misclassified galaxies.
(v) Positive predictive vlue (PPV). The proportion of actual non-

regular/merger galaxies among those predicted to be non-regulars
or mergers: TP/(TP + FP). (This is also dubbed purity.)

(vi) Negative predictive value (NPV). The proportion of actual
regular/non-merger galaxies among those predicted to be regulars
or non-mergers: TN/(TN + FN).

We define the symbols used above in Table 1.
Random forest assesses the efficacy of each statistic for disam-

biguating classes by computing Gini importance scores for each
(see, e.g. chapter 9 of HTF09; note that the Gini importance score
differs from the Gini statistic G). At any given node of any tree,
the n samples to be split belong to two classes (e.g. merger/non-
merger), with proportions p1 = n1/n and p2 = n2/n. A metric of
class impurity at this node is i = 1 − p2

1 − p2
2. The samples are

then split along the axis associated with one chosen image statistic,
with proportions pl = nl/n and pr = nr/n being assigned to two
daughter nodes. New values of the impurity metric are computed
at each daughter node; call these values il and ir. The reduction in
impurity achieved by splitting the data is �i = i − plil − prir. Each
value of �i is associated with one image statistic; the average of the
�i’s for each image statistic over all nodes and all trees is the Gini
importance score.

Note that in this work, we are not as concerned with the absolute
importance score of each statistic (which is not readily interpretable)
as we are with relative scores derived by, e.g. dividing importance
scores by the maximum observed importance score value. Relative

5 We note that this algorithm produces similar results to the Bayes classifier
(see, e.g. chapter 2 of HTF09), which sets c = l0/(l0 + l1), where l0 and l1
are the number of objects in each identified class, respectively.
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scores are sufficient to allow us to rank the image statistics in order
of how useful they are by themselves in classification. They also
allow us to reduce the dimensionality of our statistic space, if neces-
sary, by eliminating those that are not as useful for disambiguating
classes. This point is not important in the context of implementing
random forest – the random forest algorithm is computationally
efficient even when presented with very high dimensional spaces
of statistics – but does become important if we are to implement
density-estimation-based analysis schemes like that discussed in
Section 5.3.

4 A PPLICATION TO HST IMAG ES
O F G O O D S - S G A L A X I E S

We demonstrate the efficacy of the MID statistics for detecting
non-regular and merging galaxies by analysing H- and J-band HST
WFC3 images of the northernmost part of the GOODS-S field (the
Early Release Science (ERS) fields; see Windhorst et al. 2011 and
references therein). These images have been analysed by members
of the CANDELS (Grogin et al. 2011; Koekemoer et al. 2011) team.
They ran SEXTRACTOR to extract a catalogue of 6178 putative sources
and associated segmentation maps in the H-band images, with the
input parameters set so as to optimize the detection and deblend-
ing of galaxies at z ∼ 2 (D. Kocevski, private communication).
Subsequent visual morphological evaluation of these sources by,
typically, three or four CANDELS team members yielded a set of
1639 galaxies with isophotal magnitudes H < 25 (Kartaltepe et al.,
in preparation). In Fig. 3, we show an example of one galaxy from
the catalogue that annotators identified as undergoing a merger.

CANDELS-team labels are based primarily on H-band images,
with data in the other three bands used to inform labelling. An anno-
tator may first choose one (or more) ‘main’ morphological class(es)
(e.g. spheroid, disc, irregular), then indicate whether the galaxy is
in the process of merging (or interacting within or beyond the seg-
mentation map). Determining the fraction of annotators identifying
a particular galaxy as a merger is straightforward. However, be-
cause individual annotators could register more than one vote, and
because only the final vote totals are available, it is impossible to
determine how many annotators labelled any one galaxy both as
irregular and a merger as opposed to selecting only one of the two

Figure 3. Example of a galaxy identified as a merging galaxy by
CANDELS-team annotators. Top Left and Right: HST ACS V- and z-band
images, respectively. Bottom Left and Right: HST WFC3 J- and H-band
images, respectively. Note the clear presence of two nuclei.

(as well as to determine the number of annotators, period). We thus
estimate the fraction of votes for non-regularity, f = V∗/V, where V
is the total number of votes, by defining V∗ as

V∗ ≡ mean(V low
∗ , V high

∗ ) ,

with

V low
∗ = max{votes for irregular, votes for merger}

and

V high
∗ = max{votes for irregular + votes for merger, V },

representing lower and upper bounds on the number of annotators
that voted for merger or irregular.

4.1 Base analysis: H-band data

In our base analysis, we apply random forest regression and classi-
fication to detect non-regulars and mergers within a labelled set of
1639 galaxies observed in the H-band. For each galaxy, we have as
the predictor (or independent) variables:

(i) the MID statistics, which we compute using postage stamp
images (generally 84 × 84 pixels) and a segmentation map and

(ii) the CAS (a la C03) and GM20 statistics (a la L04), as provided
by the CANDELS collaboration.

Recall that prior to computing the I and D statistics, we smooth the
data with a symmetric Gaussian kernel of width σ to mitigate the
effect of local intensity maxima caused by noise (see Section 2.2).
We choose σ by maximizing the importance of the I statistic; here,
σ = 1 pixel for both the non-regular and merger analyses. The
continuous response variable Y ∈ [0, 1] is

(i) f = V∗/V, as estimated from visual annotations by members
of the CANDELS collaboration. The numbers of galaxies with vote
fractions favouring non-regularity of f > 0.5 and f = 0.5 are 337 and
163, respectively; the analogous numbers for the merger analysis
are 109 and 71.

In Fig. 4, we display the relative importance of each of the CAS-
GM20-MID statistics for detecting non-regulars (x-axis) and mergers
(y-axis). These values are normalized such that the value of the most
important statistic, the I statistic in the regular/non-regular analysis,
is one. (To interpret relative importance, note for instance that the M
statistic by itself performs about half as well at differentiating reg-
ulars from non-regulars as the I statistic by itself. This implies that
there is greater separation between the distributions of I statistics
observed for regulars and for non-regulars than there is for the anal-
ogous M statistic distributions. See Fig. 5.) The error bars in Fig. 4
represent the standard deviations of the populations from which we
sample importance values, and are estimated by running random
forest 1000 times, i.e. by randomly dividing the 1639 galaxies into
training and test sets 1000 times and recording variable importance
and measures of classifier performance each time. Several conclu-
sions are readily apparent when we examine Fig. 4: (a) the I statistic
is the most important for detecting both non-regulars and mergers;
(b) as expected, the M statistic outperforms the D statistic in merger
detection, and vice-versa for detection of non-regulars and (c) the
MID statistics, along with the A (asymmetry) statistic of C03, are
far more important for identifying non-regulars/mergers than the
other statistics we examine.

Fig. 5 displays projections of the four-dimensional space of im-
age statistics defined by the MID and A statistics and indicates
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Figure 4. Relative importance of statistics in differentiating between regu-
lar and non-regular galaxies (x-axis) and non-merger and merging galaxies
(y-axis) in CANDELS-team-processed H-band data, as output by the ran-
dom forest classification algorithm. The values of all data points have been
normalized by the value of the I statistic for the regular/non-regular analysis.
See Section 3.3 for the definition of statistic importance, and Section 4.1
for practical interpretation of the results. The error bars indicate sample
standard deviation given 1000 separate runs of random forest, and thus are
not measures of the standard error of the mean; the 1σ uncertainties in the
means are given by shrinking the error bars by a factor of

√
1000 = 31.62.

Figure 5. Scatter plots of the MID and A statistics as computed for
CANDELS-team-processed H-band images. Green circles represent galax-
ies visually identified as mergers and blue crosses represent non-regulars
that are not also mergers. The red lines are contours indicating the density of
regular galaxies. The non-zero slopes of the black line, the best-fitting lin-
ear regression functions, indicate the expected positive correlations between
each of these statistics. Note that for increased clarity, only 100 randomly
selected non-regulars/mergers are displayed.

Table 2. Classifier performance × 104 – H-band/non-regular.
This table displays sample mean plus/minus 1σ standard error,
each multipled by 104.

ID A-ID A-MID Full

Sens 7562 ± 14 7907 ± 11 7873 ± 11 7874 ± 13
Spec 8071 ± 13 8187 ± 7 8136 ± 7 8181 ± 10
Risk 4366 ± 8 3906 ± 8 3991 ± 8 3945 ± 8

Toterr 2056 ± 7 1883 ± 4 1930 ± 4 1897 ± 5
PPV 5712 ± 13 5943 ± 9 5865 ± 9 5977 ± 11
NPV 9089 ± 4 9215 ± 4 9199 ± 4 9194 ± 4

Table 3. Classifier performance × 104 – H-band/merger. This
table displays sample mean plus/minus 1σ standard error, each
multipled by 104.

MI A-MI A-MID Full

Sens 6917 ± 22 7520 ± 22 7790 ± 17 7816 ± 17
Spec 8683 ± 14 8546 ± 15 8564 ± 9 8591 ± 8
Risk 4400 ± 13 3934 ± 13 3646 ± 13 3594 ± 13

Toterr 1477 ± 12 1547 ± 12 1506 ± 7 1480 ± 6
PPV 3562 ± 20 3525 ± 20 3541 ± 13 3603 ± 13
NPV 9662 ± 2 9723 ± 2 9752 ± 2 9753 ± 2

the distributions of these statistics for mergers (green points), non-
regulars that are not mergers (blue points) and regulars (red contour
lines). The reader should intuitively picture classification via ran-
dom forest as placing vertical and horizontal lines on these plots so
as to maximize the proportion of, e.g. non-regulars on one side and
the proportion of regulars on the other. Given this intuitive picture,
the relative efficacy of, e.g. the I statistic with respect to the other
statistics is clearly evident. Also evident from Fig. 5 is our relative
inability to separate mergers and irregular galaxies using MID and
A alone. Furthermore, work is needed to develop image statistics
that will optimize merger irregular class separation.

The results in Fig. 4 were generated by analysing the entire eight-
dimensional space of image statistics with random forest. Given
that the number of possibly useful statistics will only increase in
the future, it is important to determine we can disregard any of
our current statistics with little, if any, loss in classifier perfor-
mance. (This is not a trivial issue, as we discuss in Section 5.3:
the number of statistics we incorporate may limit future analy-
ses.) To that end, we define and analyse three reduced statistic
sets for both the regular/non-regular case (ID,A-ID,A-MID) and the
non-merger/merger case (MI,A-MI,A-MID), based on rankings of
relative statistic importance.

See Tables 2 and 3. The interpretation of these tables depends on
the performance metric one prefers: e.g. sensitivity (or catalogue
completeness), estimated risk or PPV (or catalogue purity), etc. If
we assume that one would wish to strike a balance between all
three of these measures, we find that the reduced statistic set A-ID
is sufficient for disambiguating regulars from non-regulars, while
one requires the additional information carried by the full set of
statistics to disambiguate mergers from non-mergers.

4.2 Effect of changing the observation wavelength: J-band
data

Recall that CANDELS-team labels are based primarily on how
galaxies appear in the H band. However, in order to, e.g. differenti-
ate true mergers from galaxies exhibiting disc instabilities, we will
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Figure 6. Same as Fig. 4, but for J-band data. The similarity of this figure
to Fig. 4 indicates the robustness of the MID statistics across wavelength
regimes.

Table 4. Classifier performance × 104 − J-band. This
table displays sample mean plus/minus 1σ standard
error, each multipled by 104.

Regular/non-regular Non-merger/merger

Sens 7747 ± 14 7594 ± 18
Spec 8124 ± 11 8295 ± 9
Risk 4129 ± 8 4112 ± 14

Toterr 1973 ± 6 1770 ± 7
PPV 5947 ± 12 3143 ± 11
NPV 9119 ± 4 9715 ± 2

need to extend the application of our statistics to other wavelength
regimes. This extension is the subject of a future work; here, we
make a preliminary assessment of the robustness of the MID statis-
tics as a function of wavelength by applying them to the J-band
images associated with our galaxy sample.

In Fig. 6, we display the relative importance of the CAS-GM20-
MID statistics for the detection of non-regulars (x-axis) and mergers
(y-axis) when we analyse J-band rather than H-band images. (For
these data, the smoothing scales were 0.75 and 1.4 pixels for the
non-regular and merger analyses, respectively.) The conclusions
that we draw from this figure and from Table 4 are similar to those
drawn from Fig. 4 and Tables 2 and 3: the MID statistics are robust
against changes in observation wavelength.

4.3 Effect of changing the segmentation algorithm

The SEXTRACTOR segmentation maps used in the analysis of Sec-
tion 4.1 associate image pixels with galaxies using an absolute
surface brightness threshold, such that the fraction of galaxy flux
within the map aperture varies with galaxy brightness. This can
introduce redshift-dependent biases into analyses due to surface
brightness dimming. We verify that our results from Section 4.1 are
robust to segmentation algorithm by reanalyzing the data using an
algorithm based on that of L04, who compute a Petrosian radius

Table 5. Effect of H-band segmentation: estimated risk × 104.
This table displays sample mean plus/minus 1σ standard error,
each multipled by 104.

Algorithm Regular/non-regular Non-merger/merger

SEXTRACTOR 3945 ± 8 3594 ± 13
New (η = 0.1) 4229 ± 8 3643 ± 14
New (η = 0.2) 3975 ± 8 3679 ± 13
New (η = 0.3) 4081 ± 8 3960 ± 14
New (η = 0.4) 4044 ± 8 3958 ± 12

for each galaxy, i.e. the radius at which the mean surface brightness
within an elliptical annulus is a fraction η (e.g. 0.2) of the mean
brightness within that radius. The assumption of ellipticity will bias
the construction of maps for disturbed galaxies, so we generalize the
algorithm by using intensity quantiles. We define a grid of quantile
values and begin with the largest value, determining which pixels
have intensities greater than this value and summing their intensi-
ties. We then systematically decrease the quantile value until the
mean surface brightness of newly added pixels is a fraction η of
the mean brightness of all pixels with intensities above the quan-
tile value. Because segmentation maps produced by this algorithm
are based on relative changes in surface brightness, these maps are
nominally redshift independent.

For isolated, undisturbed galaxies that exhibit elliptical profiles,
our algorithm yields maps similar to those output by the L04 algo-
rithm. In other cases, when distinct clumps of pixels are present,
care must be taken since they may represent two distinct nuclei
within one galaxy, or unrelated (i.e. non-interacting) pairs of galax-
ies, etc. As we decrease the quantile value, we risk overblending,
but if we do not decrease the value enough, we risk missing clumps
that may be merger signatures. Thus, in our analysis we include
a threshold quantile value below which we do not blend distinct
clumps of pixels (i.e. below which only one of the observed clumps
will be used to establish the segmentation map). We determine the
threshold value empirically by testing several values and finding
which is associated with the smallest classification risk.

In Table 5, we show classifier performance as a function of al-
gorithm and aperture parameter η. We conclude that our new seg-
mentation algorithm with η ≈ 0.2 yields risk estimates on par with
those yielded by the SEXTRACTOR algorithm. We observe that clas-
sification degrades markedly with smaller apertures (i.e. larger η

values). For larger apertures, classification degrades more quickly
for regular/non-regular analysis than for non-merger/merger anal-
ysis. By examining other measures of classifier performance, we
determine that this reduced ability to differentiate between regular
and irregular-but-not-peculiar galaxies is due more to regulars being
misclassified as irregulars than vice-versa. This is consistent with
the fact that smaller η values will lead to increased overblending
and to machines classifying some fraction of the regular galaxy
population as non-regulars.

4.4 Observation-specific effects

Previous works have shown that image statistics can be system-
atically affected by changes in observation-specific quantities like
galaxy S/N (e.g. G and M20, as shown in L04). In this section, we
determine the effect of three observation-specific quantities on the
MID statistics: galaxy S/N, galaxy size and galaxy elongation.

We quantify a galaxy’s S/N by first determining the sample
mean X̄ and sample standard deviation sX of the intensities Iij of
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Figure 7. Estimated variation in the MID statistics as a function of the
signal-to-noise, S/N, between galaxies observed in a sample UDF field
(≈78.5 ks exposure) and the same galaxies observed in a ≈5.6 ks subex-
posure (commensurate with typical CANDELS exposure times). The blue
dots are individual data and the red curves are estimates of the mean cre-
ated using five quantiles, i.e. the lowest 20 per cent of CANDELS-exposure
S/N values, the next 20 per cent, etc. We find that the MID statistics are
insensitive to S/N in the regimes �1.7 (M and D) and �3.2 (I).

non-segmentation map pixels that lie within the galaxy’s postage
stamp. We then standardize the intensities of all pixels in the postage
stamp:

ˆ(
S

N

)
ij

= Iij − X̄

sX

.

We examine the standardized intensities of those pixels within 0.5r̂

of the galaxy’s centre, where r̂ is our estimate of galaxy ‘size’ in arc-
seconds: r̂ = 0.06

√
nseg/π. We summarize the resulting empirical

distribution by selecting the median standardized intensity. Galaxy
elongation is e = 1 − b/a, where a and b are estimated semimajor
and semiminor galaxy axes.

To examine how the MID statistics vary as a function of S/N, etc.,
we follow the strategy of Lotz et al. (2006) (see specifically Fig. 1
and associated text). We analyse two images: an ≈78.5 ks H-band
WFC3 image of the Ultra Deep Field (UDF) and an ≈5.6 ks subset
of that image, with the time of the shallower data set chosen to
be commensurate with typical exposure times of CANDELS fields.
(The ERS data that we analyse in Section 4.1 has integration time
≈50 ks.) In Figs 7, 8 and 9 we estimate how MID statistic values
change with reduced exposure time. In these figures, each blue dot
represents the value of an observational quantity (plotted along the
x-axis) and a change in statistic value (plotted along the y-axis).
We estimate the mean change in each statistic (the red curves) by
computing the 5 per cent trimmed sample mean and sample stan-
dard error of those y values associated with each of five quantiles
along the x-axis. (The first quantile contains the first 20 per cent
of the data, as defined along the x-axis, the second contains the
next 20 per cent, etc.) We apply trimming so that our estimates are
resistant to outliers.

Figure 8. Same as Fig. 7, except that estimated galaxy size in arcseconds
is plotted along the x-axis. We find that the MID statistics are insensitive to
galaxy size. The data in the upper-right panel are consistent with the null
hypothesis of a constant offset from zero. We find the amplitude of this
offset is related to the scale of the smoothing kernel applied to the data prior
to computing I. See Section 4.4 for more detail.

Figure 9. Same as Fig. 7, except that estimated galaxy elongation (1 − b/a)
is plotted along the x-axis. We find that the MID statistics are insensitive to
elongation, with the exception of a systematic increase in D in the regime
�0.48. As in Fig. 8, we observe that the data in the upper-right panel are
consistent with the null hypothesis of a constant offset from zero and that
the amplitude of this offset is related to the smoothing kernel applied to the
data prior to computing I. See Section 4.4 for more detail.
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On the basis of these figures, we conclude that the M and D
statistics do not vary in any systematic fashion with S/N, size or
elongation, aside from the regime S/N � 1.7 for both and elon-
gation �0.48 for D. (For the case of large elongation, where the
systematic trend is not necessarily obvious to the eye, we test the
null hypothesis of zero slope twice, including and then discarding
the uppermost quantile of elongation values; the p values are 0.021
and 0.221, respectively. Thus, if we include the uppermost quan-
tile, we would conclude that the slope is non-zero and thus that
D exhibits a systematic trend with elongation.) We observe simi-
lar behaviour for the I statistic as a function of S/N, except that
unlike M and D it does exhibit systematic changes in the regime
1.7 � S/N � 3.2. We also observe that as a function of size and
elongation, �I exhibits an offset from zero that is consistent with
being a constant offset (i.e. consistent with having slope zero) as
determined via weighted linear regression. We find that this offset
is sensitive to the scale σ of the bivariate Gaussian kernel that we
use to smooth the data prior to the computation of the I statistic (see
Section 2.2). In our analyses, we kept σ constant between the longer
and shorter exposures. However, a noisier (i.e. low exposure time)
image requires a larger σ to eliminate spurious secondary maxima.
We choose not to optimize the σ values in this analysis because
doing so would not change the qualitative conclusion that I exhibits
no systematic trends with either size and elongation.

4.5 Effect of galaxy redshift

Having established the regimes in which the MID statistics are
(in)sensitive to galaxy S/N, size and elongation, we verify that the
ensemble average of the MID statistics increases with redshift, as
would expected for statistics that are sensitive to merging activity.
In Fig. 10, we show the means of the M, I and D statistics, as well
as their standard errors, as a function of photometric redshift in bins
of size �z = 0.2. To construct this figure, we apply the GOODS-S
photometric catalogue of Dahlen et al. (2010), which provides z as
well as the values zlo and zhi that bound the central 95 per cent of
each galaxy’s redshift probability density function (pdf). Lacking
further information, we assume the pdf for galaxy i to be a normal
pdf with mean μi = (zi, hi + zi, lo)/2 and standard deviation σ i =
(zi, hi − zi, lo)/3.92. Then, e.g. the estimated mean of M in redshift
bin j is given by

M̄(zj ) =
∑n

i=1 wijMi∑n
i=1 wij

,

where

wij = �

(
(zj + 0.1) − μi

σi

)
− �

(
(zj − 0.1) − μi

σi

)
.

�( · ) is the cumulative distribution function for the standard normal
distribution. We account for demonstrated biases by excluding the
six galaxies for which S/N < 1.7 in the upper-left panel (M); the
twelve galaxies for which S/N < 3.2 in the upper-right panel (I) and
the 297 galaxies for which S/N < 1.7 or e > 0.48 in the lower-left
panel (D).

Fig. 10 shows clear trends between redshift and each of the
MID statistics, but we should be careful when quantifying and
interpreting these trends because of our assumption of normal pdfs.
Thus, here we simply assess whether the data are consistent with
the null hypothesis of no redshift trend (i.e. zero slope) via weighted
linear regression. The p values of the slopes are 8.4 × 10−8 (M),
1.1 × 10−5 (I) and 1.2 × 10−6 (D); we conclude that there are, as

Figure 10. Means and standard errors of the means for the M, I and D
statistics as a function of photometric redshift in bins of size �z = 0.2,
where the redshifts are provided by the GOODS-S catalogue of Dahlen
et al. (2010). Via weighted linear regression, we find that the p values of
the slopes are 6 × 10−8 (M), 2 × 10−5 (I) and 10−5 (D), i.e. we observe
strong positive correlations between redshift and the MID statistics. For
more details, see Section 4.5.

we would expect, strong positive correlations between redshift and
the MID statistics.

5 E X A M I N I N G T H E A N N OTATO R ’ S RO L E

In this section, we explore some of the effects that human annotators
have on galaxy morphology analysis. First, we ask whether annota-
tors can accurately label mergers across the regimes of galaxy S/N
and size spanned by a single exposure, such as the H-band ERS data
we analyse above. Then we look towards the future and discuss two
important issues: Is it always better to have more annotators looking
at each galaxy image? and Ultimately, are annotators even necessary
within the context of what we want to achieve, namely, selecting
a model of hierarchical structure formation and constraining its
parameters?

5.1 Can annotators accurately detect merging activity
within a single data set?

In Section 4.1, we establish that the MID statistics are useful for
detecting non-regular galaxies and merging galaxies that were la-
belled as such by human annotators. However, we have yet to es-
tablish whether labelling is consistent as a function of, e.g. galaxy
S/N and size. We construct two equally sized subsets (n = 563)
of the 1639 galaxies in our data sample, one where size and S/N
are both (relatively) low, and another where size and S/N are both
(relatively) high:

r̂ ≤ 0.6′′ and
ˆ(
S

N

)
≤ 15 ‘low’

r̂ > 0.6′′ and
ˆ(
S

N

)
> 15 ‘high’.
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Figure 11. Distribution of effective radius (r̂ in the text) versus median

pixel wise S/N ( ˆ( S
N

) in the text) for our 1639-galaxy sample. Dashed lines

indicate the values r̂ = 0.6 arcsec and ˆ( S
N

) = 15. The 563 galaxies each
within the lower-left and upper-right regions (as defined relative to where
the dashed lines cross) comprise the ‘low’ and ‘high’ data sets, respectively.

Figure 12. Boxplots showing the distribution of M statistic for identified
non-mergers (f < 0.5), galaxies for which the vote was split (f = 0.5) and
mergers (f > 0.5). The left- and right-hand panels show distributions for the
‘low’ and ‘high’ data sets, respectively. The distributions are similar, except
for the lack of identified mergers with small M values in the ‘low’ data
set: M clearly correlates with the ability of annotators to identify small-size
and low-S/N mergers. The behaviour of the I statistic between data sets is
similar and is not shown.

Both the ‘low’ and ‘high’ data sets contain 563 galaxies. See Fig. 11.
In Fig. 12, we display the distributions of the M statistics for both
data sets, for merger vote fractions f < 0.5, f = 0.5 and f > 0.5.
We immediately observe a lack of identified mergers (f > 0.5) with
small M values in the ‘low’ data set. (We note that a similar issue
arises in the analysis of regular galaxies, as well as when we use
the I statistic in place of M.) It is clear from Fig. 12 that numerous
small-S/N/size mergers are being mislabelled, a systematic error
that throws into doubt the idea that one can accurately estimate
merger fractions at high redshifts via visual labelling. (Note that we
base this conclusion on the analysis of an ≈50 ks image; typical
CANDELS exposures will be one-tenth as long, exacerbating this
error.) This result helps motivate the alternative analysis paradigm
that we discuss in Section 5.3.

5.2 The relationship between the number of annotators
and classification efficiency

An astronomer’s time is a valuable commodity. Given a set of N
astronomers with nominally similar annotation ability, is it best to
have all of them train a machine-learning algorithm by visually
inspecting hundreds if not thousands of galaxy images? Or can
using a subset of size n  N yield similar detection efficiency?

To attempt to answer these questions, we utilize an analysis car-
ried out by the CANDELS collaboration (Kartaltepe et al., in prepa-
ration) in which 200 objects observed in the J- and H-bands by the
HST WFC3 in the DEEP-JH region of the GOODS-S field were
each annotated by 42 voters. The details of voting are similar to
those described above in Section 4, except that in this analysis each
annotator’s vote is recorded, so there is no ambiguity about the frac-
tion of annotators identifying particular galaxies as either mergers
or non-regulars.

After removing 15 objects from the sample that were subse-
quently identified as stars (J. Lotz, private communication), we
analyse the H-band images of the remaining 185 galaxies in a man-
ner similar to that described in Section 4. The principal difference
between analyses is that for computational efficiency, we use only
the MID statistics; it is not imperative to use all available statistics
because our aim in this analysis is to observe how the estimated risk
varies as a function of the number of annotators, n, without regard
to its actual value.

We assume that a new expert voter will randomly identify a
given galaxy i as a non-regular/merger with probability pi, where pi

is the recorded vote fraction for the set of 42 annotators. Thus, to
simulate the number of votes for non-regularity/merging for each
galaxy, given n annotators, we sample from a binomial distribution
with parameters n and pi. The result is an integer number of votes
Zi ∈ [0, n], with the simulated vote fraction being Fi = Zi/n. Given
F and the MID statistics for all 185 galaxies, we run random forest
and output the estimated risk. We repeat the process of simulation
and risk estimation 100 times for each value of n so as to build
up an empirical distribution of estimated risk values. Note that as
we increase n, we only randomly sample new votes. For instance,
to go from n = 5 to n = 7, we add two new simulated votes to
the five we already have. We feel that this is more realistic than
randomly sampling a completely new set of votes, as an increased n
in practice generally will be implemented by adding to a core group
of annotators rather than replacing that core group in its entirety.

In Fig. 13, we display the median of our risk distributions for
the non-regular (blue points and lines) and merger (green points
and lines) detection cases. The thin and thick lines drawn through
each point indicate the range for the central 95 and 68 values in
each distribution, respectively. (Note that the values of the risk are
generally much higher here than in Tables 2 and 3 because the
training sets here are one-ninth the size of those in the analysis
of Section 4.) We observe that for both cases, the estimated risk
decreases somewhat sharply when n � 10; above n ≈ 10, the risk
for the non-regular case still decreases, albeit more slowly, while
the risk for the merger case remains constant. Imprecise estimation
of the true vote fractions for small n and vote fraction discretization
lead to the increase in risk as n → 0, as it becomes less and less
likely that, e.g. a ‘true’ merger will be identified as a merger by both
annotators and the machine classifier.

For the merger case, it is clear from Fig. 13 that little improvement
in risk estimation occurs when adding annotators beyond n ≈ 10.
For the non-regular case, there is a slight improvement on average,
but there is no guarantee that one would see that improvement in any
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Figure 13. Median-estimated risk in the detection of non-regulars (the
lower sequence of points in each panel, denoted with blue circles) and
mergers (the upper sequence of points in each panel, denoted with green
triangles) in the analysis of 185 galaxies described in Section 5.2, as a
function of number of annotators. The right-hand panel shows the same data
as the left, for the reduced range n = 3–15. The thin and thick lines drawn
through each point represents the central 95 and 68 per cent of the empirical
distribution of risk values, respectively. The lines are slightly offset from
each other for clarity. See Section 5.2 for further discussion.

Figure 14. Histogram of the changes in estimated risk that occur when
we increase the number of annotators from 11 to 43 in each of the 100
simulations we run in our analysis of 185 galaxies (Section 5.2). Positive
values of �R indicate a reduction in estimated risk. In 19 of 100 simulations,
the estimated risk increases: adding annotators led to worse results.

single analysis. In Fig. 14 we show the histogram of the change in
risk, �R, that occurs as we go from n = 11 to n = 43 annotators; each
value is derived from one of our 100 simulations. In 19 of 100 cases,
there is an increase in estimated risk; adding 32 annotators made
our results worse. This lack of significant improvement in estimated
risk, coupled with the time resources that would be expended by
the additional annotators, argues strongly that an annotator pool of
size n ≈ 10 is sufficient for detecting non-regulars.

We conclude that no more than ≈10 annotators are needed to
effectively train a galaxy morphology classifier using a given set
of galaxy images when the goal is to detect non-regular galaxies
or mergers. If more annotators are available, they should examine
additional sets of galaxy images to increase the overall training set
size, and thereby reduce the misclassification risk.

5.3 Towards the future: eliminating visual annotation

As hinted at throughout this work, there are many issues with an-
notating galaxies and using the resulting morphologies to make
quantitative statements about structure formation. Some of the more
noteworthy issues are the following:

(i) Ambiguity. Expert annotators often do not agree on whether a
given galaxy is, e.g. undergoing a merger (as opposed to, e.g. under-
going star formation due to in situ disc instabilites). This inability
to agree, which led to the large spread of merger fraction estimates
compiled by Lotz et al. (2011), is a not-easily quantified source of
systematic error: e.g. how does one incorporate the experience and
innate biases of each annotator into a statistical analysis? Given
the subject of this paper, ambiguity is perhaps an obvious issue to
point out, but its deleterious effects on structure formation analysis
cannot be overstated.

(ii) Loss of Statistical Information. Above and beyond the issue
of ambiguity is the fact that in the classification exercise, we are
attempting to take a continuous distribution (e.g. all possible galaxy
morphologies) and discretize it (reduce it to, e.g. two bins: mergers
and non-mergers). Discretization can only have an adverse effect
on statistical inferences, making them certainly less precise and
perhaps less accurate.

(iii) Waste of Resources. Annotation is, by definition, a time-
consuming exercise that diverts astronomers from other activities.

Our vision of (near) future analyses of galaxy morphology and
hierarchical structure formation rests on the belief that simulation
engines will be developed that can replicate the wide variety of
observed morphologies at a resolution at least on par with current
observations. If this occurs, then we can fit structure formation
models in the following manner:

(i) Populate space of image statistics by analysing a set of ob-
served galaxies.

(ii) Pick a set of model parameters describing structure forma-
tion.

(iii) Run a simulator and project the simulated galaxies down on
to a (set of) two-dimensional plane(s).

(iv) Populate a space of image statistics by analysing the set of
simulated galaxy images.

(v) Directly compare the estimated distributions of the simulated
and observed statistics.

(vi) Return to step (ii), changing the model parameter values and
iterate until convergence is achieved.

The comparison step, step (v), involves estimating the density func-
tions from which the simulated and observed statistics were sam-
pled, and then determining a ‘distance’ between those functions.
There exist numerous, mature methodologies for performing den-
sity estimation and estimating distances between density functions.
(A summary of possible distance measures is provided in, e.g. Cha
2007.) The key to a computationally efficient comparison is to avoid
the ‘curse of dimensionality’: density estimation is difficult in more
than even a few dimensions. Thus, even if annotators are no longer
needed, there will always be a need to define new statistics that can
better disambiguate the morphologies of galaxies.

6 SU M M A RY

This work is motivated by the problem of detecting irregular and
peculiar galaxies in an automatic fashion in low-resolution and low-
S/N images. This information, combined with estimates of galaxy
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redshift, can help us determine how the merger fraction evolves with
time and thus place constraints on theories of hierarchical structure
formation. One body of work on irregular/peculiar galaxy detection
focuses on the tactic of reducing galaxy images to a set of summary
statistics that sufficiently captures morphological details and allows
computationally efficient analysis of large samples of galaxies. In
particular, the CAS statistics of C03 and references therein and the
Gini and M20 statistics of L04 and references therein have become
standard statistics to use in morphological analyses. However, the
utility of these statistics to detect the irregularity or peculiarity
of high-redshift galaxies is open to question, with simulations by
L04 in particular suggesting that the GM20 statistics would lose
the ability to detect peculiar galaxies in the low-resolution/low-S/N
regime.

In an attempt to increase detection efficiency, we have developed
three new image statistics – the M, I and D statistics – and we test
them (along with CAS and GM20) on J- and H-band HST WFC3
images of 1639 galaxies in the GOODS-Sfield. In particular, we test
these statistics’ abilities to identify both irregular and peculiar galax-
ies (which we collectively dub ‘non-regular’) and peculiar galaxies
alone (or ‘mergers’). We use a machine-learning-based classifier,
random forest, to predict the classes of each of 1639 galaxies, and
we determine its performance by comparing these predictions to
visual annotations made by members of the CANDELS collabora-
tion. We strongly advocate the use of random forest or other, similar
algorithms such as support vector machines in galaxy morphology
studies, as they allow computationally efficient analyses of high-
dimensional image-statistic spaces, and thus stand in contrast to the
commonly used inefficient technique of projecting these spaces to
two-dimensional planes within which classes are identified.6

As shown in Figs 4 and 6 and discussed in Sections 4.1–4.2, we
find that our MID statistics, along with the asymmetry statistic A,
are the most important ones for disambiguating sets of galaxies in
our sample; in general, using these four statistics alone yields de-
tection efficiencies on par with using the full set CAS-GM20-MID.
In Section 4.3, we demonstrate that classifier performance is insen-
sitive to the details of the algorithm for constructing segmentation
maps, and in Section 4.4, we find that the MID statistics are largely
insensitive to changes in galaxy S/N, size and elongation.

We explore the role of human annotators in Section 5. In Sec-
tion 5.1, we construct two subsamples of our data set, with small-
S/N/size and large-S/N/size galaxies, respectively, to ascertain
whether the ability of annotators to label mergers or non-regulars
degrades with S/N and size. The difference in appearance of the
right-most boxplots in both panels of Fig. 12 strongly suggests an
inability on the part of annotators to properly label mergers with
relatively small values of M in low-S/N/size data. (Similar results
hold for regulars versus non-regulars, and if we use I in place of
M.) Beyond any numbers, this result raises doubt about whether
merger rates at high redshift can ever be accurately estimated using
annotators.

We next assess how the number of annotators affects classifica-
tion performance, using a set of 185 H-band-observed HST WFC3
images that were each annotated by 42 members of the CANDELS
collaboration. We repeatedly sampled subsets of these annotators
and used their votes to generate new sets of class predictions, and

6 We note that generally one cannot predict a priori which machine-learning-
based algorithm is best to use for a particular analysis, so we also strongly
advocate using more than one to ensure robust results. For instance, in this
work we tested four, and found all to give similar results; random forest was
subsequently chosen because of the four it is conceptually the simplest.

then we recorded how the estimated risk of making an incorrect
prediction varied as a function of the number of annotators (see
Fig. 13). As discussed in Section 5.2, we find that there is no evi-
dence that increasing the number of annotators above n ≈ 10 yields
any improvements in classifier performance for a given set of galaxy
images; if more are available, they should be charged with increas-
ing the training set size by annotating additional galaxy images,
thereby reducing the risk of misclassification.

As we discuss in Section 5.3, however, any argument over the
optimal number of annotators to deploy within a project may became
moot in the future if simulation engines are developed that can
effectively recreate the observed populations of galaxies. In our
vision of the future, an analyst would populate two spaces – one with
observed statistics, and one with statistics computed from simulated
galaxies – and estimate and directly compare the density functions
from which the statistics were sampled. In other words, we would
quantitatively determine how well the points in the two spaces ‘line
up.’ This process would be repeated until an optimal match is found,
i.e. until the best-fitting model of hierarchical structure formation
is found. This methodology effectively sidesteps the issue of, e.g.
estimating the merger fraction as a function of redshift, but one could
still determine that by, e.g. adopting a definition of ‘merger’ and
examining the evolutionary histories of galaxies in the best-fitting
simulation to see which underwent the process. While annotation
is eliminated in this vision, the need for new and improved image
statistics is not, since to avoid the ‘curse of dimensionality’ we
would always strive to perform density estimation in relatively low-
dimensional spaces of image statistics.
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A P P E N D I X A : IM P L E M E N T I N G R A N D O M
FOREST USING R

R, an open source application for statistical computing available at
http://www.r-project.org, is widely used in the statistics community.
One of the primary benefits to using R is that one does not have to
write code to implement commonly used statistics and machine-
learning algorithms, which generally exist in one or more packages
contributed to the Comprehensive R Archive Network. One such
package is RANDOMFOREST, which we utilize here.

After R is downloaded and the GUI is opened, the first step is to
install the RANDOMFOREST package. This may be done by, e.g. typing
the following at the prompt within the GUI window and following
any subsequent directions:

> install.packages(‘‘randomForest’’)

Before running random forest, however, it is good practice to
create a source file, which is a list of commands that can be read
into R via the source command (or via the GUI’s pull-down menus).
In the following, we assume that the image statistics and the vote
fractions are in ASCII text files with single-row headers and one
additional row for each galaxy, e.g.,

M I D

0.4747 0.3123 0.5666

0.0133 0.0405 0.0259

...

We dub these files statistics.txt and votes.txt.
The following are the contents of a minimalist file that when

sourced will run random forest over 1000 splits while assuming
that half the galaxies are to be assigned to the training set.

# Input the random forest library functions

library(randomForest)

# Input the dependent (votes) and

# independent (statistics) data

# Assume the first row of votes is:

# ‘‘nonreg merger’’

# Assume the first row of statistics is:

# ‘‘M I D’’

#

votes = read.table(‘‘votes.txt’’,header=T)$merger

stats = read.table(‘‘statistics.txt’’,header=T)

# Standardize the statistics column-by-column:

# X_i -> (X_i-mean(X))/sd(X)

#

stats = scale(stats)

# Specify the (sub)set of statistics to input to

# random forest.

set = c(‘‘M’’,‘‘I’’,‘‘D’’)

# Here we assume no ties that have to be broken.

class = votes>0.5

ntrain = round(0.50*length(data[,1]))

B = 1000

# Initialize vectors of length B

sens = spec = risk = toterr = ppv = npv =
rep(-9,B)

for ( ii in 1:B ) {
# assign galaxies to training/test sets

train = sample(1:length(stats[,1]),size=
ntrain)

test = (1:length(stats[,1]))[-train]

# run random forest regression -- Section 3.1

fit = randomForest(x=stats[train,set],

y=votes[train],

maxnodes=8)

predTrain = predict(fit,stats[train,set])

predTest = predict(fit,stats[test,set])

# determine the class threshold -- Section 3.2

cut = seq(0,1,0.001)

c0 = NULL

c1 = NULL

for ( ii in 1:length(cut) ) {
c0 = append(c0,

mean(predTrain[class[train]==0]>cut[ii]))

c1 = append(c1,

mean(predTrain[class[train]==1]<cut[ii]))

}
smooth = ksmooth(cut,colMeans(rbind(c0,c1)),

bandwidth=0.05)

mc = smooth$x[which.min(smooth$y)]

# record the important quantities -- Section 3.3

sens[ii] = 1-mean(predTest[class[test]==1]<mc)

spec[ii] = 1-mean(predTest[class[test]==0]>=
mc)

risk[ii] = mean(predTest[class[test]==1]<mc)+
mean(predTest[class[test]==0]>mc)

toterr[ii] = mean((predTest>mc)!=class[test])

ppv[ii] = 1-mean(class[test][predTest>mc]==0)

 at C
arnegie M

ellon U
niversity on February 28, 2014

http://m
nras.oxfordjournals.org/

D
ow

nloaded from
 

http://www.r-project.org
http://mnras.oxfordjournals.org/
http://mnras.oxfordjournals.org/


Detection of disturbed galaxy morphologies 295

npv[ii] = 1-mean(class[test][predTest<=mc]==
1)

}
# Output the mean estimated risk over all B splits

# (other values can be output in a similar

manner).

cat(‘‘Estimated Risk = ’’,mean(risk),‘‘\n’’)

q()

Once this file is saved to disc (we dub this file rf_source.R),
it may be sourced via the “Source File...’ option in the R GUI’s
pull-down menu, or by typing

> source(‘‘<path>/rf_source.R’’)

This paper has been typeset from a TEX/LATEX file prepared by the author.
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