175 research outputs found

    Additive-mediated size control of MOF nanoparticles

    Get PDF
    A fast synthesis approach toward sub-60 nm sized MOF nanoparticles was developed by employing auxiliary additives. Control over the size of HKUST-1 and IRMOF-3 particles was gained by adjusting the concentration and type of stabilizers. Colloidal solutions of the MOFs were used for the formation of optically homogeneous thin films by spin-coating

    Phenyl-triazine oligomers for light-driven hydrogen evolution

    Get PDF
    The design of stable, yet highly tunable organic photocatalysts which orchestrate multi-step electron transfer reactions is at the heart of the newly emerging field of polymer photocatalysis. Covalent triazine frameworks such as the archetypal CTF-1 have been theorized to constitute a new class of photocatalytically active polymers for light-driven water splitting. Here, we revisit the ionothermal synthesis of CTF-1 by trimerization of 1,4-dicyanobenzene catalyzed by the Lewis acid zinc chloride and demonstrate that the microporous black polymer CTF-1 is essentially inactive for hydrogen evolution. Instead, highly photoactive phenyl-triazine oligomers (PTOs) with higher crystallinity as compared to CTF-1 are obtained by lowering the reaction temperature to 300 °C and prolonging the reaction time to >150 hours. The low reaction temperature of the PTOs largely prevents incipient carbonization and thus results in a carbon-to-nitrogen weight ratio close to the theoretical value of 3.43. The oligomers were characterized by MALDI-TOF and quantitative solid-state NMR spectroscopy, revealing variations in size, connectivity and thus nitrile-to-triazine ratios depending on the initial precursor dilution. The most active PTO samples efficiently and stably reduce water to hydrogen with an average rate of 1076 (±278) μmol h−1 g−1 under simulated sunlight illumination, which is competitive with the best carbon nitride-based and purely organic photocatalysts. The photocatalytic activity of the PTOs is found to sensitively depend on the polymerization degree, thus suggesting a prominent role of the unreacted nitrile moieties in the photocatalytic process. Notably, PTOs even show moderate hydrogen production without the addition of any co-catalyst

    Thermal Conversion of Guanylurea Dicyanamide into Graphitic Carbon Nitride via Prototype CNx Precursors

    Get PDF
    Guanylurea dicyanamide, [(H2N)C(-O)NHC(NH2)2][N(CN)2], has been synthesized by ion exchange reaction in aqueous solution and structurally characterized by single-crystal X-ray diffraction (C2/c, a = 2249.0(5) pm, b = 483.9(1) pm, c = 1382.4(3) pm, β = 99.49(3)°, V = 1483.8(5) × 106 pm3, T = 130 K). The thermal behavior of the molecular salt has been studied by thermal analysis, temperature-programmed X-ray powder diffraction, FTIR spectroscopy, and mass spectrometry between room temperature and 823 K. The results were interpreted on a molecular level in terms of a sequence of thermally induced addition, cyclization, and elimination reactions. As a consequence, melamine (2,4,6-triamino-1,3,5-triazine) is formed with concomitant loss of HNCO. Further condensation of melamine yields the prototypic CNx precursor melem (2,6,10-triamino-s-heptazine, C6N7(NH2)3), which alongside varying amounts of directly formed CNxHy material transforms into layered CNxHy phases without significant integration of oxygen into the core framework owing to the evaporation of HNCO. Thus, further evidence can be added to melamine and its condensation product melem acting as “key intermediates” in the synthetic pathway toward graphitic CNxHy materials, whose exact constitution is still a point at issue. Due to the characteristic formation process and hydrogen content a close relationship with the polymer melon is evident. In particular, the thermal transformation of guanylurea dicyanamide clearly demonstrates that the formation of volatile compounds such as HNCO during thermal decomposition may render a large variety of previously not considered molecular compounds suitable CNx precursors despite the presence of oxygen in the starting material

    Ionothermal Synthesis of Imide-Linked Covalent Organic Frameworks

    Get PDF
    Covalent organic frameworks (COFs) are an extensively studied class of porous materials, which distinguish themselves from other porous polymers in their crystallinity and high degree of modularity, enabling a wide range of applications. COFs are most commonly synthesized solvothermally, which is often a time‐consuming process and restricted to well‐soluble precursor molecules. Synthesis of polyimide‐linked COFs (PI‐COFs) is further complicated by the poor reversibility of the ring‐closing reaction under solvothermal conditions. Herein, we report the ionothermal synthesis of crystalline and porous PI‐COFs in zinc chloride and eutectic salt mixtures. This synthesis does not require soluble precursors and the reaction time is significantly reduced as compared to standard solvothermal synthesis methods. In addition to applying the synthesis to previously reported imide COFs, a new perylene‐based COF was also synthesized, which could not be obtained by the classical solvothermal route. In situ high‐temperature XRPD analysis hints to the formation of precursor–salt adducts as crystalline intermediates, which then react with each other to form the COF

    Magneto-optical probe of the fully gapped Dirac band in ZrSiS

    Full text link
    We present a far-infrared magneto-optical study of the gapped nodal-line semimetal ZrSiS in magnetic fields BB up to 7 T. The observed field-dependent features, which represent intra- (cyclotron resonance) and interband transitions, develop as B\sqrt{B} in increasing field and can be consistently explained within a simple 2D Dirac band model with a gap of 26 meV and an averaged Fermi velocity of 3×1053\times10^{5} m/s. This indicates a rather narrow distribution of these parameters along the in-plane portions of the nodal line in the Brillouin zone. A field-induced feature with an energy position that does not depend on BB is also detected in the spectra. Possible origins of this feature are discussed.Comment: accepted to Phys. Rev. Researc

    Tuning the stacking behaviour of a 2D covalent organic framework through non-covalent interactions

    Get PDF
    Two-dimensional covalent organic frameworks (COFs) are crystalline porous materials composed of organic building blocks that are connected via covalent bonds within their layers, but through non-covalent interactions between the layers. The exact stacking sequence of the layers is of paramount importance for the optoelectronic, catalytic and sorption properties of these polymeric materials. The weak interlayer interactions lead to a variety of stacking geometries in COFs, which are both hard to characterize and poorly understood due to the low levels of crystallinity. Therefore, detailed insights into the stacking geometry in COFs is still largely elusive. In this work we show that the geometric and electronic features of the COF building blocks can be used to guide the stacking behavior of two related 2D imine COFs (TBI-COF and TTI-COF), which either adopt an averaged "eclipsed'' structure with apparent zero-offset stacking or a unidirectionally slip-stacked structure, respectively. These structural features are confirmed by XRPD and TEM measurements. Based on theoretical calculations, we were able to pinpoint the cause of the uniform slip-stacking geometry and high crystallinity of TTI-COF to the inherent self-complementarity of the building blocks and the resulting donor-acceptor-type stacking of the imine bonds in adjacent layers, which can serve as a more general design principle for the synthesis of highly crystalline COFs

    Rational design of carbon nitride photocatalysts by identification of cyanamide defects as catalytically relevant sites

    Get PDF
    The heptazine-based polymer melon (also known as graphitic carbon nitride, g-C3N4) is a promising photocatalyst for hydrogen evolution. Nonetheless, attempts to improve its inherently low activity are rarely based on rational approaches because of a lack of fundamental understanding of its mechanistic operation. Here we employ molecular heptazine-based model catalysts to identify the cyanamide moiety as a photocatalytically relevant 'defect'. We exploit this knowledge for the rational design of a carbon nitride polymer populated with cyanamide groups, yielding a material with 12 and 16 times the hydrogen evolution rate and apparent quantum efficiency (400 nm), respectively, compared with the unmodified melon. Computational modelling and material characterization suggest that this moiety improves coordination (and, in turn, charge transfer kinetics) to the platinum co-catalyst and enhances the separation of the photogenerated charge carriers. The demonstrated knowledge transfer for rational catalyst design presented here provides the conceptual framework for engineering high-performance heptazine-based photocatalysts

    Non symmorphic band degeneracy at the Fermi level in ZrSiTe

    Get PDF
    Non-symmorphic materials have recently been predicted to exhibit many different exotic features in their electronic structures. These originate from forced band degeneracies caused by the non-symmorphic symmetry, which not only creates the possibility to realize Dirac semimetals, but also recently resulted in the prediction of novel quasiparticles beyond the usual Dirac, Weyl or Majorana fermions, which can only exist in the solid state. Experimental realization of non-symmorphic materials that have the Fermi level located at the degenerate point is difficult, however, due to the requirement of an odd band filling. In order to investigate the effect of forced band degeneracies on the transport behavior, a material that has such a degeneracy at or close to the Fermi level is desired. Here, we show with angular resolved photoemission experiments supported by density functional calculations, that ZrSiTe hosts several fourfold degenerate Dirac crossings at the X point, resulting from non-symmorphic symmetry. These crossings form a Dirac line node along XR, which is located almost directly at the Fermi level and shows almost no dispersion in energy. ZrSiTe is thus the first real material that allows for transport measurements investigating Dirac fermions that originate from non-symmorphic symmetry.Comment: 13 pages, 4 figures, accepted for publication in New Journal of Physic
    corecore