6 research outputs found

    Machine Protection System at SARAF

    No full text
    International audienceCEA Saclay Irfu is in charge of the major part of the control system of the SARAF-LINAC accelerator based at Soreq in Israel. This scope also includes the Machine Protection System. This system prevents any damage in the accelerator by shutting down the beam in case of detection of risky incidents like interceptive diagnostics in the beam or vacuum or cooling defects. So far, the system has been used successfully up to the MEBT. It will be tested soon for the super conducting Linac consisting of 4 cryomodules and 27 cavities. This Machine Protection System relies on three sets: the MRF timing system that is the messenger of the "shut beam" messages coming from any devices, IOxOS MTCA boards with custom FPGA developments that monitor the Section Beam Current Transmission along the accelerator and a Beam Destination Master that manages the beam destination required. This Destination Master is based on a master PLC. It permanently monitors Siemens PLCs that are in charge of the "slow" detection for fields such as vacuum, cryogenic and cooling system. The paper describes the architecture of this protection system and the exchanges between these three main parts

    Results of CEA Tests of SARAF Couplers Prototypes

    No full text
    International audienceCEA is committed to delivering a Medium Energy Beam Transfer line and a superconducting linac (SCL) for SARAF accelerator in order to accelerate 5 mA beam of either protons from 1.3 MeV to 35 MeV or deuterons from 2.6 MeV to 40 MeV. The SCL consists in 4 cryomodules. The first two cryomodules host 6 and 7 half-wave resonator (HWR) low beta cavities (β = 0.09) at 176 MHz. The last two identical cryomodule will host 7 HWR high-beta cavities (β = 0.18) at 176 MHz. The maximal required power to be transmitted to the beam is 11.4 kW for high-beta cavity couplers. This document presents the results of the coupler tests and conditioning

    Evolution Based on MicroTCA and MRF Timing System

    No full text
    International audienceFor many years our Institute CEA IRFU has had a sound experience in VME and EPICS. For the accelerator projects SPIRAL2 at Ganil in Normandy and IFMIF/LIPAc at JAEA/Rokkasho (Japan) the EPICS control systems were based on VME. For 5 years our Institute has been involved in several in-kind collaboration contracts with ESS. For the first contracts (ESS test stands, Source and LEBT controls) ESS recommended us to use VME based solutions on IOxOS boards. Our close collaboration with ESS, their support and the requirements for new projects have led us to develop a standardized hardware and software platform called IRFU EPICS Environment based on microTCA.4 and MRF timing system. This paper describes the advantages of the combination of these recent technologies and the local control system architectures in progress for the SARAF project

    Status of the SARAF-Phase2 Control System

    No full text
    International audienceSNRC and CEA collaborate to the upgrade of the SARAF accelerator to 5 mA CW 40 Mev deuteron and proton beams and also closely to the control system. CEA is in charge of the Control System (including cabinets) design and implementation for the Injector (upgrade), MEBT and Super Conducting Linac made up of 4 cryomodules hosting HWR cavities and solenoid packages. This paper gives a detailed presentation of the control system architecture from hardware and EPICS software points of view. The hardware standardization relies on MTCA.4 that is used for LLRF, BPM, BLM and FC controls and on Siemens PLC 1500 series for vacuum, cryogenics and interlock. CEA IRFU EPICS Environment (IEE) platform is used for the whole accelerator. IEE is based on virtual machines and our MTCA.4 solutions and enables us to have homogenous EPICS modules. It also provides a development and production workflow. SNRC has integrated IEE into a new IT network based on advanced technology. The commissioning is planned to start late summer 2021

    SEPAGE: a proton-ion-electron spectrometer for LMJ-PETAL

    No full text
    International audienceThe SEPAGE spectrometer (Spectromètre Electrons Protons A Grandes Energies) was realized within the PETAL+ project funded by the French ANR (French National Agency for Research). This plasma diagnostic, installed on the LMJ-PETAL laser facility, is dedicated to the measurement of charged particle energy spectra generated by experiments using PETAL (PETawatt Aquitaine Laser). SEPAGE is inserted inside the 10-meter diameter LMJ experimental chamber with a SID (Diagnostic Insertion System) in order to be close enough to the target. It is composed of two Thomson Parabola measuring ion spectra and more particularly proton spectra ranging from 0.1 to 20 MeV and from 8 to 200 MeV for the low and high energy channels respectively. The electron spectrum is also measured with an energy range between 0.1 and 150 MeV. The front part of the diagnostic carries a film stack that can be placed as close as 100 mm from the target center chamber. This stack allows a spatial and spectral characterization of the entire proton beam. It can also be used to realize proton radiographies
    corecore