4 research outputs found

    Multicentric case series of scuba diving fatalities: The role of intracardiac gaseous carbon dioxide in the forensic diagnosis.

    Get PDF
    Scuba diving fatalities post-mortem diagnosis presents a higher level of forensic complexity because of their occurrence in a non-natural human life environment. Scuba divers are equipped with diving gas to breathe underwater. It is essential for them to be fully trained in order to be able to manage their dive safely despite the varying increase of ambient pressure and temperature decrease. Throughout the dive, the inhaled diving gas is dissolved in the diver's tissues during the descent and if the decompression steps are not respected during the ascent, the balance between the dissolved gas and the tissues (including blood) is disrupted, leading to a gaseous release in the organism. Depending on the magnitude of this gaseous release, free gas can occur in blood and tissue. Venous or arterial gas embolism can also occur as a consequence of decompression sickness or barotraumatism. It can also induce drowsiness that consequently leads to drowning. As a result, the occurrence of gas in dead scuba divers is very complex to interpret, as is the difficulty to distinguish it from resuscitation maneuver artifacts or body decomposition. Although the literature is scarce in this domain, significant work has been done to provide a precise intracadaveric gas sampling method to enlighten the cause and circumstances of death during the dive. The aim of this study is to obtain higher statistical significance by collecting a number of cases to confirm the gas sampling protocol and analysis and gain more information about the cause of death and the events surrounding the fatality through the establishment of clear management guidelines

    Understanding scuba diving fatalities: carbon dioxide concentrations in intra-cardiac gas.

    No full text
    Important developments in the diagnosis of scuba diving fatalities have been made thanks to forensic imaging tool improvements. Multi-detector computed tomography (MDCT) permits reliable interpretation of the overall gaseous distribution in the cadaver. However, due to post-mortem delay, the radiological interpretation is often doubtful because the distinction between gas related to the dive and post-mortem decomposition artifactual gases becomes less obvious. We present six cases of fatal scuba diving showing gas in the heart and other vasculature. Carbon dioxide (CO₂) in cardiac gas measured by gas chromatography coupled to thermal conductivity detection were employed to distinguish decomposition from embolism based on the detection of decomposition gases (hydrogen, hydrogen sulfide and methane) and to confirm arterial gas embolism (AGE) or post-mortem offgasing diagnoses. A Radiological Alteration Index (RAI) was calculated from the scan. Based on the dive history, the intra-cadaveric gas was diagnosed as deriving from decomposition (one case, minimal RAI of 61), post-mortem decompression artifacts (two cases, intermediate RAI between 60 and 85) and barotrauma/AGE (three cases, maximal RAI between 85 and 100), illustrating a large distribution inside the bodies. MDCT scans should be interpreted simultaneously with compositional analysis of intra-cadaveric gases. Intra-cadaveric gas sampling and analysis may become useful tools for understanding and diagnosing scuba diving fatalities. In cases with short post-mortem delays, the CO₂ concentration of the cardiac gas provides relevant information about the circumstances and cause of death when this parameter is interpreted in combination with the diving profile
    corecore