8 research outputs found

    Specific Protein 1 and p53 Interplay Modulates the Expression of the KCTD-Containing Cullin3 Adaptor Suppressor of Hedgehog 2

    Get PDF
    The Hedgehog (Hh) signaling pathway plays a crucial role in normal embryonic development and adult tissue homeostasis. On the other end, dysregulated Hh signaling triggers a prolonged mitogenic response that may prompt abnormal cell proliferation, favoring tumorigenesis. Indeed, about 30% of medulloblastomas (MBs), the most common malignant childhood cerebellar tumors, exhibit improper activation of the Hh signaling. The oncosuppressor KCASH2 has been described as a suppressor of the Hh signaling pathway, and low KCASH2 expression was observed in Hh-dependent MB tumor. Therefore, the study of the modulation of KCASH2 expression may provide fundamental information for the development of new therapeutic approaches, aimed to restore physiological KCASH2 levels and Hh inhibition. To this end, we have analyzed the TATA-less KCASH2 proximal promoter and identified key transcriptional regulators of this gene: Sp1, a TF frequently overexpressed in tumors, and the tumor suppressor p53. Here, we show that in WT cells, Sp1 binds KCASH2 promoter on several putative binding sites, leading to increase in KCASH2 expression. On the other hand, p53 is involved in negative regulation of KCASH2. In this context, the balance between p53 and Sp1 expression, and the interplay between these two proteins determine whether Sp1 acts as an activator or a repressor of KCASH2 transcription. Indeed, in p53–/– MEF and p53 mutated tumor cells, we hypothesize that Sp1 drives promoter methylation through increased expression of the DNA methyltransferase 1 (DNMT1) and reduces KCASH2 transcription, which can be reversed by Sp1 inhibition or use of demethylating agents. We suggest therefore that downregulation of KCASH2 expression in tumors could be mediated by gain of Sp1 activity and epigenetic silencing events in cells where p53 functionality is lost. This work may open new venues for novel therapeutic multidrug approaches in the treatment of Hh-dependent tumors carrying p53 deficiency

    The RIG-I agonist M8 triggers cell death and natural killer cell activation in human papillomavirus-associated cancer and potentiates cisplatin cytotoxicity

    Get PDF
    Although the activation of innate immunity to treat a wide variety of cancers is gaining increasing attention, it has been poorly investigated in human papillomavirus (HPV)-associated malignancies. Because these tumors harbor a severely impaired cGAS-STING axis, but they still retain a largely functional RIG-I pathway, another critical mediator of adaptive and innate immune responses, we asked whether RIG-I activation by the 5'ppp-RNA RIG-I agonist M8 would represent a therapeutically viable option to treat HPV+ cancers. Here, we show that M8 transfection of two cervical carcinoma-derived cell lines, CaSki and HeLa, both expressing a functional RIG-I, triggers intrinsic apoptotic cell death, which is significantly reduced in RIG-I KO cells. We also demonstrate that M8 stimulation potentiates cisplatin-mediated cell killing of HPV+ cells in a RIG-I dependent manner. This combination treatment is equally effective in reducing tumor growth in a syngeneic pre-clinical mouse model of HPV16-driven cancer, where enhanced expression of lymphocyte-recruiting chemokines and cytokines correlated with an increased number of activated natural killer (NK) cells in the tumor microenvironment. Consistent with a role of RIG-I signaling in immunogenic cell killing, stimulation of NK cells with conditioned medium from M8-transfected CaSki boosted NK cell proliferation, activation, and migration in a RIG-I-dependent tumor cell-intrinsic manner. Given the highly conserved molecular mechanisms of carcinogenesis and genomic features of HPV-driven cancers and the remarkably improved prognosis for HPV+ oropharyngeal cancer, targeting RIG-I may represent an effective immunotherapeutic strategy in this setting, favoring the development of de-escalating strategies

    Proteolysis-Targeting Chimera (PROTAC): Is the Technology Looking at the Treatment of Brain Tumors?

    No full text
    Post-translational modifications, such as ubiquitylation, need to be tightly controlled to guarantee the accurate localization and activity of proteins. Ubiquitylation is a dynamic process primarily responsible for proteasome-mediated degradation of substrate proteins and crucial for both normal homeostasis and disease. Alterations in ubiquitylation lead to the upregulation of oncoproteins and/or downregulation of tumor suppressors, thus concurring in tumorigenesis. PROteolysis-TArgeting Chimera (PROTAC) is an innovative strategy that takes advantage by the cell’s own Ubiquitin-Proteasome System (UPS). Each PROTAC molecule is composed by a ligand that recruits the target protein of interest (POI), a ligand specific for an E3 ubiquitin ligase enzyme, and a linker that connects these units. Upon binding to the POI, the PROTAC recruits the E3 inducing ubiquitylation-dependent proteasome degradation of the POI. To date, PROTAC technology has entered in clinical trials for several human cancers. Here, we will discuss the advantages and limitations of PROTACs development and safety considerations for their clinical application. Furthermore, we will review the potential of PROTAC strategy as therapeutic option in brain tumor, focusing on glioblastoma

    Dubs activating the hedgehog signaling pathway: a promising therapeutic target in cancer

    No full text
    The Hedgehog (HH) pathway governs cell proliferation and patterning during embryonic development and is involved in regeneration, homeostasis and stem cell maintenance in adult tissues. The activity of this signaling is finely modulated at multiple levels and its dysregulation contributes to the onset of several human cancers. Ubiquitylation is a coordinated post-translational modification that controls a wide range of cellular functions and signaling transduction pathways. It is mediated by a sequential enzymatic network, in which ubiquitin ligases (E3) and deubiquitylase (DUBs) proteins are the main actors. The dynamic balance of the activity of these enzymes dictates the abundance and the fate of cellular proteins, thus affecting both physiological and pathological processes. Several E3 ligases regulating the stability and activity of the key components of the HH pathway have been identified. Further, DUBs have emerged as novel players in HH signaling transduction, resulting as attractive and promising drug targets. Here, we review the HH-associated DUBs, discussing the consequences of deubiquitylation on the maintenance of the HH pathway activity and its implication in tumorigenesis. We also report the recent progress in the development of selective inhibitors for the DUBs here reviewed, with potential applications for the treatment of HH-related tumors

    Drug delivery systems for hedgehog inhibitors in the treatment of SHH-medulloblastoma

    No full text
    Medulloblastoma (MB) is a highly aggressive pediatric tumor of the cerebellum. Hyperactivation of the Hedgehog (HH) pathway is observed in about 30% of all MB diagnoses, thereby bringing out its pharmacological blockade as a promising therapeutic strategy for the clinical management of this malignancy. Two main classes of HH inhibitors have been developed: upstream antagonists of Smoothened (SMO) receptor and downstream inhibitors of GLI transcription factors. Unfortunately, the poor pharmacological properties of many of these molecules have limited their investigation in clinical trials for MB. In this minireview, we focus on the drug delivery systems engineered for SMO and GLI inhibitors as a valuable approach to improve their bioavailability and efficiency to cross the blood–brain barrier (BBB), one of the main challenges in the treatment of MB

    The SHH/GLI signaling pathway: a therapeutic target for medulloblastoma

    No full text
    Introduction: Medulloblastoma (MB) is a heterogeneous tumor of the cerebellum that is divided into four main subgroups with distinct molecular and clinical features. Sonic Hedgehog MB (SHH-MB) is the most genetically understood and occurs predominantly in childhood. Current therapies consist of aggressive and non-targeted multimodal approaches that are often ineffective and cause long-term complications. These problems intensify the need to develop molecularly targeted therapies to improve outcome and reduce treatment-related morbidities. In this scenario, Hedgehog (HH) signaling, a developmental pathway whose deregulation is involved in the pathogenesis of several malignancies, has emerged as an attractive druggable pathway for SHH-MB therapy. Areas covered: This review provides an overview of the advancements in the HH antagonist research field. We place an emphasis on Smoothened (SMO) and glioma-associated oncogene homolog (GLI) inhibitors and immunotherapy approaches that are validated in preclinical SHH-MB models and that have therapeutic potential for MB patients. Literature from Pubmed and data reported on ClinicalTrial.gov up to August 2020 were considered. Expert opinion: Extensive-omics analysis has enhanced our knowledge and has transformed the way that MB is studied and managed. The clinical use of SMO antagonists has yet to be determined, however, future GLI inhibitors and multitargeting approaches are promising

    Chemical, computational and functional insights into the chemical stability of the Hedgehog pathway inhibitor GANT61

    No full text
    This work aims at elucidating the mechanism and kinetics of hydrolysis of GANT61, the first and most-widely used inhibitor of the Hedgehog (Hh) signalling pathway that targets Glioma-associated oncogene homologue (Gli) proteins, and at confirming the chemical nature of its bioactive form. GANT61 is poorly stable under physiological conditions and rapidly hydrolyses into an aldehyde species (GANT61-A), which is devoid of the biological activity against Hh signalling, and a diamine derivative (GANT61-D), which has shown inhibition of Gli-mediated transcription. Here, we combined chemical synthesis, NMR spectroscopy, analytical studies, molecular modelling and functional cell assays to characterise the GANT61 hydrolysis pathway. Our results show that GANT61-D is the bioactive form of GANT61 in NIH3T3 Shh-Light II cells and SuFu−/− mouse embryonic fibroblasts, and clarify the structural requirements for GANT61-D binding to Gli1. This study paves the way to the design of GANT61 derivatives with improved potency and chemical stability

    Glabrescione B delivery by self-assembling micelles efficiently inhibits tumor growth in preclinical models of Hedgehog-dependent medulloblastoma

    Get PDF
    Aberrant activation of the Hedgehog (Hh) pathway leads to the development of several tumors, including medulloblastoma (MB), the most common pediatric brain malignancy. Hh inhibitors acting on GLI1, the final effector of Hh signaling, offer a valuable opportunity to overcome the pitfalls of the existing therapies to treat Hh-driven cancers. In this study, the toxicity, delivery, biodistribution, and anticancer efficacy of Glabrescione B (GlaB), a selective GLI1 inhibitor, were investigated in preclinical models of Hh-dependent MB. To overcome its poor water solubility, GlaB was formulated with a self-assembling amphiphilic polymer forming micelles, called mPEG5kDa-cholane. mPEG5kDa-cholane/GlaB showed high drug loading and stability, low cytotoxicity, and long permanence in the bloodstream. We found that mPEG5kDa-cholane efficiently enhanced the solubility of GlaB, thus avoiding the use of organic solvents. mPEG5kDa-cholane/GlaB possesses favorable pharmacokinetics and negligible toxicity. Remarkably, GlaB encapsulated in mPEG5kDa-cholane micelles was delivered through the blood-brain barrier and drastically inhibited tumor growth in both allograft and orthotopic models of Hh-dependent MB. Our findings reveal that mPEG5kDa-cholane/GlaB is a good candidate for the treatment of Hh-driven tumors and provide relevant implications for the translation of GlaB into clinical practice
    corecore