25 research outputs found
Use of radiolabelled choline as a pharmacodynamic marker for the signal transduction inhibitor geldanamycin
There is an urgent need to develop non-invasive pharmacodynamic endpoints for the evaluation of new molecular therapeutics that inhibit signal transduction. We hypothesised that, when labelled appropriately, changes in choline kinetics could be used to assess geldanamycin pharmacodynamics, which involves inhibition of the HSP90 molecular chaperone→Raf1→Mitogenic Extracellular Kinase→Extracellular Signal-Regulated Kinase 1 and 2 signal transduction pathway. Towards identifying a potential pharmacodynamic marker response, we have studied radiolabelled choline metabolism in HT29 human colon carcinoma cells following treatment with geldanamycin. We studied the effects of geldanamycin, on net cellular accumulation of (methyl-14C)choline and (methyl-14C)phosphocholine production. In parallel experiments, the effects of geldanamycin on extracellular signal-regulated kinase 1 and 2 phosphorylation and cell viability were also assessed. Additional validation studies were carried out with the mitogenic extracellular kinase inhibitor U0126 as a positive control; a cyclin-dependent kinase-2 inhibitor roscovitine and the phosphatidylinositol 3-kinase inhibitor LY294002 as negative controls. Hemicholinium-3, an inhibitor of choline transport and choline kinase activity was included as an additional control. In exponentially growing HT29 cells, geldanamycin inhibited extracellular signal-regulated kinase 1 and 2 phosphorylation in a concentration- and time-dependent manner. These changes were associated with a reduction in (methyl-14C)choline uptake, (methyl-14C) phosphocholine production and cell viability. Brief exposure to U0126, suppressed phosphocholine production to the same extent as Hemicholinium-3. In contrast to geldanamycin and U0126, which act upstream of extracellular signal-regulated kinase 1 and 2, roscovitine and LY294002 failed to suppress phosphocholine production. Our results suggest that when labelled with carbon-11 isotope, (methyl-11C)choline may be a useful pharmacodynamic marker for the non-invasive evaluation of geldanamycin analogues
Role of the Heat Shock Protein 90 in Immune Response Stimulation by Bacterial DNA and Synthetic Oligonucleotides
To elucidate the mechanisms of immunostimulation by bacterial DNA and synthetic oligonucleotides, the effects of heat shock protein 90 (Hsp90) inhibitors on the activation of murine spleen cells and macrophages by these molecules were investigated. Murine spleen cells and J774 and RAW264.7 macrophages responded to a CpG-containing oligodeoxynucleotide (CpG ODN) and Escherichia coli DNA by increased production of interleukin 6 (IL-6), IL-12, tumor necrosis factor alpha, and nitric oxide (NO). Pretreatment with any of the three Hsp90 inhibitors geldanamycin, radicicol, and herbimycin A resulted in a dose-dependent suppression of cytokine production from the spleen cells and macrophages and of NO from macrophages stimulated with CpG ODN or E. coli DNA. These Hsp90 inhibitors, however, had no effect on Staphylococcus aureus Cowan strain 1-induced IL-12 production from either the murine spleen cells or macrophages. CpG ODN and E. coli DNA induced increased intracellular levels of phosphorylated extracellular signal-regulated kinases (ERK1 and -2), which are members of the mitogen-activated protein (MAP) kinase family, while geldanamycin and radicicol blocked the phosphorylation of ERK1 and -2 in J774 and RAW264.7 cells. These data indicate that DNA-induced activation of murine spleen cells and macrophages is mediated by Hsp90 and that Hsp90 inhibitor suppression of DNA-induced macrophage activation is associated with disruption of the MAP kinase signaling pathway. Our findings suggest that Hsp90 inhibitors may provide a useful means of elucidating the mechanisms of immunostimulation by bacterial DNA and CpG ODN as well as a strategy for preventing adverse effects of bacterial DNA as well as lipopolysaccharide
Inhibition of cyclin-dependent kinases by purine analogues
While testing purines related to the non-specific protein kinase inhibitors M-dimethyl-aminopurine and N6-(A'-isopenteny1)adenine as potential inhibitors of the p34'd'z/cyclin B kinase, we discovered a compound with high specificity, 2-(2-hydroxyethylamino)-6-benzylamino-9-meth-ylpurine (olomoucine). Kinetic analysis of kinase inhibition reveals that olomoucine behaves as a competitive inhibitor for ATP and as a non-competitive inhibitor for histone H1 (linear inhibition for both substrates). The kinase specificity of this inhibition was investigated for 35 highly purified kinases (including p34"dk4/~y~lin D1, p4Wdk6/cyclin D3, CAMP-dependent and cGMP-dependent ki-nases, eight protein kinase C isoforms, calmodulin-dependent kinase 11, myosin light-chain kinase, mitogen-activated S6 kinase, casein kinase 2, double-stranded EWA-activated protein kinase, AMP-stimulated kinase, eight tyrosine kinases). Most kinases are not significantly inhibited. Only the cell-cycle regulating p34'dc2/cyclin B, p33cdk2/~y~lin A and p33cdk2/~y~lin E kinases, the brain ~ 3 3 ' ~ ~ ' / p35 kinase and the ERKlMAP-kinase (and its starfish homologue ~44"'~~) are substantially inhibited by olomoucine (I & values are 7, 7, 7, 3 and 25 pM, respectively). The cdk4/cyclin D1 and cdk6/ cyclin D3 kinases are not significantly sensitive to olomoucine (I & values greater than 1 mM an