13 research outputs found

    A globally applicable “triple A” risk model for essential thrombocythemia based on Age, Absolute neutrophil count, and Absolute lymphocyte count

    Get PDF
    : We examined the individual prognostic contribution of absolute neutrophil (ANC), lymphocyte (ALC), and monocyte (AMC) counts, on overall (OS), leukemia-free (LFS), and myelofibrosis-free (MFFS) survival in essential thrombocythemia (ET). Informative cases (N = 598; median age 59 years; females 62%) were retrospectively accrued from a Mayo Clinic database: JAK2 59%, CALR 27%, triple-negative 11%, and MPL 3%; international prognostic scoring system for ET (IPSET) risk high 21%, intermediate 42%, and low 37%; 7% (37/515) had abnormal karyotype and 10% (21/205) adverse mutations (SF3B1/SRSF2/U2AF1/TP53). At median 8.4 years, 163 (27%) deaths, 71 (12%) fibrotic, and 20 (3%) leukemic transformations were recorded. Multivariable analysis resulted in HR (95% CI) of 16.5 (9.9-27.4) for age > 70 years, 3.7 (2.3-6.0) for age 50-70 years, 2.4 (1.7-3.3) for ANC ≄8 × 109 /L, and 1.9 (1.4-2.6) for ALC <1.7 × 109 /L. The corresponding HR-based scores were 4, 2, 1, and 1, resulting in an new 4-tiered AgeAncAlc (AAA; triple A) risk model: high (5-6 points; median survival 8 years; HR 30.1, 95% CI 17.6-54), intermediate-2 (4 points; median 13.5 years; HR 12.7, 95% CI 7.1-23.0), intermediate-1 (2-3 points; median 20.7 years; HR 3.8, 95% CI 2.3-6.4) and low (0-1 points; median 47 years). The AAA model (Akaike Information Criterion [AIC] 621) performed better than IPSET (AIC 647) and was subsequently validated by an external University of Florence ET cohort (N = 485). None of the AAA variables predicted LFS while ALC <1.7 × 109 /L was associated with inferior MFFS (p = .01). Adverse mutations (p < .01) and karyotype (p < .01) displayed additional prognostic value without disqualifying the prognostic integrity of the AAA model. This study proposes a simple and globally applicable survival model for ET, which can be used as a platform for further molecular refinement. This study also suggests a potential role for immune-related biomarkers, as a prognostic tool in myeloproliferative neoplasms

    T-Cell Lymphoblastic Lymphoma Arising in the Setting of Myeloid/Lymphoid Neoplasms with Eosinophilia: LMO2 Immunohistochemistry as a Potentially Useful Diagnostic Marker

    Get PDF
    Simple Summary Rarely, T-lymphoblastic lymphoma (T-LBL) may develop in the setting of myeloid/lymphoid neoplasms with eosinophilia. Given important therapeutic implications, it is crucial to identify T-LBL arising in this particular context. LIM domain only 2 (LMO2) is known to be overexpressed in almost all sporadic T-LBL and not in immature TdT-positive T-cells in the thymus and in indolent T-lymphoblastic proliferations. We retrospectively evaluated the clinical, morphological, immunohistochemical and molecular features of 11 cases of T-LBL occurring in the setting of myeloid/lymphoid neoplasms with eosinophilia and investigated the immunohistochemical expression of LMO2 in this setting of T-LBL. Interestingly, 9/11 cases were LMO2 negative, with only 2 cases showing partial expression. In our study, we would suggest that LMO2 immunostaining, as part of the diagnostic panel for T-LBL, may represent a useful marker to identify T-LBL developing in the context of myeloid/lymphoid neoplasms with eosinophilia. Background: Rarely, T-lymphoblastic lymphoma (T-LBL) may develop in the setting of myeloid/lymphoid neoplasms with eosinophilia (M/LNs-Eo), a group of diseases with gene fusion resulting in overexpression of an aberrant tyrosine kinase or cytokine receptor. The correct identification of this category has relevant therapeutic implications. LIM domain only 2 (LMO2) is overexpressed in most T-LBL, but not in immature TdT-positive T-cells in the thymus and in indolent T-lymphoblastic proliferations (iT-LBP). Methods and Results: We retrospectively evaluated 11 cases of T-LBL occurring in the context of M/LNs-Eo. Clinical, histological, immunohistochemical and molecular features were collected and LMO2 immunohistochemical staining was performed. The critical re-evaluation of these cases confirmed the diagnosis of T-LBL with morphological, immunohistochemical and molecular features consistent with T-LBL occurring in M/LNs-Eo. Interestingly, LMO2 immunohistochemical analysis was negative in 9/11 cases, whereas only 2 cases revealed a partial LMO2 expression with a moderate and low degree of intensity, respectively. Conclusions: LMO2 may represent a potentially useful marker to identify T-LBL developing in the context of M/LNs-Eo. In this setting, T-LBL shows LMO2 immunohistochemical profile overlapping with cortical thymocytes and iT-LBP, possibly reflecting different molecular patterns involved in the pathogenesis of T-LBL arising in the setting of M/LNs-Eo

    Visceral Leishmaniasis

    No full text

    Integration of Molecular Information in Risk Assessment of Patients with Myeloproliferative Neoplasms

    No full text
    Philadelphia chromosome-negative myeloproliferative neoplasms (MPN) are clonal disorders of a hematopoietic stem cell, characterized by an abnormal proliferation of largely mature cells driven by mutations in JAK2, CALR, and MPL. All these mutations lead to a constitutive activation of the JAK-STAT signaling, which represents a target for therapy. Beyond driver ones, most patients, especially with myelofibrosis, harbor mutations in an array of “myeloid neoplasm-associated” genes that encode for proteins involved in chromatin modification and DNA methylation, RNA splicing, transcription regulation, and oncogenes. These additional mutations often arise in the context of clonal hematopoiesis of indeterminate potential (CHIP). The extensive characterization of the pathologic genome associated with MPN highlighted selected driver and non-driver mutations for their clinical informativeness. First, driver mutations are enlisted in the WHO classification as major diagnostic criteria and may be used for monitoring of residual disease after transplantation and response to treatment. Second, mutation profile can be used, eventually in combination with cytogenetic, histopathologic, hematologic, and clinical variables, to risk stratify patients regarding thrombosis, overall survival, and rate of transformation to secondary leukemia. This review outlines the molecular landscape of MPN and critically interprets current information for their potential impact on patient management

    Integration of multiparameter flow cytometry score improves prognostic stratification provided by standard models in primary myelofibrosis

    Get PDF
    Prognostic modeling in myelofibrosis (MF) has classically pursued the integration of informative clinical and hematological parameters to separate patients' categories with different outcomes. Modern stratification includes also genetic data from karyotype and mutations. However, some poorly standardized variables, as peripheral blood (PB) blast count by morphology, are still included. In this study, we used multiparameter flow cytometry (MFC) with the aim of improving performance of existing scores. We studied 363 MF patients with available MFC files for PB CD34+ cells count determination at diagnosis. We adapted Ogata score to MF context including 2 parameters: absolute CD34+ cells count (/ÎŒL) and granulocytes to lymphocytes SSC ratio. A score of 1 was attributed to above‐threshold values of each parameter. Accordingly, patients were categorized as MFC(low) (score = 0, 62.0%), MFC(int) (score = 1, 29.5%), and MFC(high) (score = 2, 8.5%). MFC(low) had significantly longer median OS (not reached) compared to MFC(int) (55 months) and MFC(high) (19 months). We integrated MFC into established models as a substitute of morphological PB blasts count. Patients were reclassified according to MFC‐enhanced scores, and concordance (C‐) indexes were compared. As regards IPSS, C‐indexes were 0.67 and 0.74 for standard and MFC‐enhanced model, respectively (Z score − 3.82; p = 0.0001). MFC‐enhanced MIPSS70+ model in PMF patients yielded a C‐index of 0.78, outperforming its standard counterpart (C‐index 0.73; Z score − 2.88, p = 0.004). Our data suggest that the incorporation of MFC‐derived parameters, easily attainable from standard assay used for CD34+ cells determination, might help to refine the current prognostic stratification models in myelofibrosis
    corecore