4,243 research outputs found

    SUSY and the Electroweak Phase Transition

    Full text link
    We analyze the effective 3 dimensional theory previously constructed for the MSSM and multi-Higgs models to determine the regions of parameter space in which the electroweak phase transition is sufficiently strong for a B+LB+L asymmetry to survive in the low temperature phase. We find that the inclusion of all supersymmetric scalars and all 1-loop corrections has the effect of enhancing the strength of the phase transition. Without a light stop or extension of the MSSM the phase transition is sufficiently first order only if the lightest Higgs mass M_{h}\lsi 70 GeV and tan\beta\lsi 1.75.Comment: 17 pages, 6 figures, uses eps

    Competition of rotation and stratification in flux concentrations

    Full text link
    In a strongly stratified turbulent layer, a uniform horizontal magnetic field can become unstable to spontaneously form local flux concentrations due to a negative contribution of turbulence to the large-scale (mean-field) magnetic pressure. This mechanism, called the negative effective magnetic pressure instability (NEMPI), is of interest in connection with dynamo scenarios where most of the magnetic field resides in the bulk of the convection zone, and not at the bottom. Recent work using the mean-field hydromagnetic equations has shown that NEMPI becomes suppressed at rather low rotation rates with Coriolis numbers as low as 0.1.}{Here we extend these earlier investigations by studying the effects of rotation both on the development of NEMPI and on the effective magnetic pressure. We also quantify the kinetic helicity from direct numerical simulations (DNS) and compare with earlier work.}{To calculate the rotational effect on the effective magnetic pressure we consider both DNS and analytical studies using the τ\tau approach. To study the effects of rotation on the development of NEMPI we use both DNS and mean-field calculations of the 3D hydromagnetic equations in a Cartesian domain.}{We find that the growth rates of NEMPI from earlier mean-field calculations are well reproduced with DNS, provided the Coriolis number is below about 0.06. In that case, kinetic and magnetic helicities are found to be weak. For faster rotation, dynamo action becomes possible. However, there is an intermediate range of rotation rates where dynamo action on its own is not yet possible, but the rotational suppression of NEMPI is being alleviated.}{Production of magnetic flux concentrations through the suppression of turbulent pressure appears to be possible only in the upper-most layers of the Sun, where the convective turnover time is less than 2 hours.}Comment: 13 pages, 13 figures submitted to A&

    Magnetic flux concentrations from dynamo-generated fields

    Full text link
    The mean-field theory of magnetized stellar convection gives rise to the two possibility of distinct instabilities: the large-scale dynamo instability, operating in the bulk of the convection zone, and a negative effective magnetic pressure instability (NEMPI) operating in the strongly stratified surface layers. The latter might be important in connection with magnetic spot formation, but the growth rate of NEMPI is suppressed with increasing rotation rates, although recent direct numerical simulations (DNS) have shown a subsequent increase in the growth rate. We examine quantitatively whether this increase in the growth rate of NEMPI can be explained by an alpha squared mean-field dynamo, and whether both NEMPI and the dynamo instability can operate at the same time. We use both DNS and mean-field simulations (MFS) to solve the underlying equations numerically either with or without an imposed horizontal field. We use the test-field method to compute relevant dynamo coefficients. DNS show that magnetic flux concentrations are still possible up to rotation rates above which the large-scale dynamo effect produces mean magnetic fields. The resulting DNS growth rates are quantitatively well reproduced with MFS. As expected, for weak or vanishing rotation, the growth rate of NEMPI increases with increasing gravity, but there is a correction term for strong gravity and large turbulent magnetic diffusivity. Magnetic flux concentrations are still possible for rotation rates above which dynamo action takes over. For the solar rotation rate, the corresponding turbulent turnover time is about 5 hours, with dynamo action commencing in the layers beneath.Comment: 10 pages, 10 figures, submitted to A&

    Efficiency of Human Activity on Information Spreading on Twitter

    Full text link
    Understanding the collective reaction to individual actions is key to effectively spread information in social media. In this work we define efficiency on Twitter, as the ratio between the emergent spreading process and the activity employed by the user. We characterize this property by means of a quantitative analysis of the structural and dynamical patterns emergent from human interactions, and show it to be universal across several Twitter conversations. We found that some influential users efficiently cause remarkable collective reactions by each message sent, while the majority of users must employ extremely larger efforts to reach similar effects. Next we propose a model that reproduces the retweet cascades occurring on Twitter to explain the emergent distribution of the user efficiency. The model shows that the dynamical patterns of the conversations are strongly conditioned by the topology of the underlying network. We conclude that the appearance of a small fraction of extremely efficient users results from the heterogeneity of the followers network and independently of the individual user behavior.Comment: 29 pages, 10 figure

    Exploring accumulative query expansion for relevance feedback

    Get PDF
    For the participation of Dublin City University (DCU) in the Relevance Feedback (RF) track of INEX 2010, we investigated the relation between the length of relevant text passages and the number of RF terms. In our experiments, relevant passages are segmented into non-overlapping windows of xed length which are sorted by similarity with the query. In each retrieval iteration, we extend the current query with the most frequent terms extracted from these word windows. The number of feedback terms corresponds to a constant number, a number proportional to the length of relevant passages, and a number inversely proportional to the length of relevant passages, respectively. Retrieval experiments show a signicant increase in MAP for INEX 2008 training data and improved precisions at early recall levels for the 2010 topics as compared to the baseline Rocchio feedback

    Neutrinos in the simplest little Higgs scenario and TeV leptogenesis

    Full text link
    The little Higgs scenario may provide an interesting framework to accommodate TeV scale leptogenesis because a TeV Majorana mass of the right-handed neutrino that we employ for the latter may find a natural place near the ultraviolet cutoff of the former. In this work we study how a light neutrino spectrum, generated radiatively, and TeV scale leptogenesis can be embedded in the simplest little Higgs framework. Alternatively, we highlight how the neutrino Yukawa textures of the latter are constrained.Comment: 10 pages, latex, v2: refs and comments added, to appear in PR

    Symmetry Nonrestoration at High Temperature in Little Higgs Models

    Full text link
    A detailed study of the high temperature dynamics of the scalar sector of Little Higgs scenarios, proposed to stabilize the electroweak scale, shows that the electroweak gauge symmetry remains broken even at temperatures much larger than the electroweak scale. Although we give explicit results for a particular modification of the Littlest Higgs model, we expect that the main features are generic. As a spin-off, we introduce a novel way of dealing with scalar fluctuations in nonlinear sigma models, which might be of interest for phenomenological applications.Comment: 23 pages, LaTeX, 4 figure

    Semantic Web-enabled Protocol Mediation for the Logistics Domain

    Get PDF
    Among the problems that arise when trying to make different applications interoperate with each other, protocol mediation is one of the most difficult ones and for which less relevant literature can be found. Protocol mediation is concerned with non-matching message interaction patterns in application interaction. In this paper we describe the design and implementation of a protocol mediation component that has been applied in the interoperation between two heterogeneous logistic provider systems (using two different standards: RosettaNet and EDIFACT), for a specific freight forwarding task
    corecore