22 research outputs found

    Impact of climate change on solar irradiation and variability over the Iberian Peninsula using regional climate models

    Get PDF
    As solar energy will be an increasingly important renewable energy source in the future years, the study of how climate change affects both temporal and spatial variability is very important. In this paper, we study future changes of the solar radiation resource in the Iberian Peninsula (IP) through a set of simulations from ESCENA project until mid-century. The evaluation of the simulations against observations indicates contrasting biases for the different regional climate models (RCMs) in terms of solar irradiation amount and its interannual variability. We propose a diagnostic for the quality of solar energy resource, in which the gridpoints are classified in four categories depending on the combination of solar irradiation amount and variability. The observed large percentage of points in the optimal category (high irradiation/low variability) in the IP is captured by the RCMs in general terms. The analysis of scenarios indicates a future increase in solar irradiation, although not all scenarios agree in the geographical distribution of this increase. In most projections, a shift is projected from the category with optimal resource quality towards the category with high irradiation/high variability, pointing to a certain quality loss in the solar resource. This result is not general, as a few scenarios show an opposite result. The exceptions are not linked to a particular GCM or emissions scenario. Finally, results from a first approximation to the issue of the ability of solar energy to cover power demand peaks in summer show important differences between regions of the IP. The spatially-averaged correlation of solar irradiation and summer surface temperatures for the whole IP is rather high, which is a positive result as the strong interconnections of the power grid within the IP could allow a distribution of solar power surpluses in certain regions for such high-temperature episodes

    Ocean dynamics shapes the structure and timing of Atlantic Equatorial Modes

    Get PDF
    A recent study has brought to light the co‐existence of two distinct Atlantic Equatorial Modes during negative phases of the Atlantic Multidecadal Variability: the Atlantic Niño and Horse‐Shoe (HS) mode. Nevertheless, the associated air‐sea interactions for HS mode have not been explored so far and the prevailing dynamic view of the Atlantic Niño has been questioned. Here, using a forced ocean model simulation, we find that for both modes, ocean dynamics is essential to explain the equatorial SST variations, while air‐sea fluxes control the off‐equatorial SST anomalies. Moreover, we demonstrate the key role played by ocean waves in shaping their distinct structure and timing. For the positive phase of both Atlantic Niño and HS, anomalous westerly winds trigger a set of equatorial downwelling Kelvin waves (KW) during spring‐summer. These dKWs deepen the thermocline, favouring the equatorial warming through vertical diffusion and horizontal advection. Remarkably, for the HS, an anomalous north‐equatorial wind stress curl excites an upwelling Rossby wave (RW), which propagates westward and is reflected at the western boundary becoming an equatorial upwelling KW. The uKW propagates to the east, activating the thermocline feedbacks responsible to cool the sea surface during summer months. This RW‐reflected mechanism acts as a negative feedback causing the early termination of the HS mode. Our results provide an improvement in the understanding of the TAV modes and emphasize the importance of ocean wave activity to modulate the equatorial SST variability. These findings could be very useful to improve the prediction of the Equatorial Modes

    Revisiting the CMIP5 Thermocline in the Equatorial Pacific and Atlantic Oceans

    Get PDF
    The thermocline is defined as the ocean layer for which the vertical thermal gradient is maximum. In the equatorial ocean, observations led to the use of the 20 °C isotherm depth (z20) as an estimate of the thermocline. This study compares z20 against the physical thermocline in the equatorial Atlantic and Pacific Oceans, using Simple Ocean Data Assimilation reanalysis and fifth phase of the Coupled Model Intercomparison Project preindustrial control simulations. Our results show that z20 is systematically deeper and flatter than the thermocline and does not respond correctly to surface wind stress variations. It is also shown that the annual cycle of z20 is much weaker than that of the physical thermocline. This happens in both equatorial basins and indicates that z20 does not react to the same mechanisms as the thermocline. This could have important consequences in the assessment of air-sea coupling in current general circulation models and bias reduction strategies

    Changes in interannual tropical Atlantic-Pacific basin interactions modulated by a South Atlantic cooling

    Get PDF
    Although tropical interbasin interactions at interannual time scales are presently receiving much attention, their controlling factors and variations on longer time scales are under debate. Tropical convection plays a crucial role in the occurrence and nonstationarity of them. In this paper, we investigate the dependence of interannual tropical AtlanticPacific basin interactions on convection-related features of the tropical oceans’ climatology, especially the ITCZ position. Wecontrast a CGCM control simulation with an experiment in which tropical convection is modified by an artificial perturbation outside the tropics that reduces the incident shortwave radiation in a region of the South Atlantic. Based on previous work, this modification is expected to shift in latitude the climatological position of the simulated ITCZ. The experiment shows altered Walker circulations, stronger interannual variability over the tropical oceans, a westward extension of the Atlantic Ni˜no pattern and of convection, and shallower thermocline in the Pacific, making the basin more sensitive to both local and remote perturbations. As a consequence, the experiment shows enhanced interannual Atlantic–Pacificbasin interactions at the equator, and weaker teleconnections between the north tropical Atlantic and the equatorial Pacific. The latter seems to occur because the impact of the warm Atlantic SST anomalies is offset by the presence of warm SST anomalies in El Ni˜no region. Despite the uncertainties raised because the simulations are relatively short, we conclude that this work presents a potential explanation for the long-term changes in the tropical basin interactions and offers a novel and useful methodology for their analysis

    Secular Variability of the Upwelling at the Canaries Latitude: An Instrumental Approach

    Get PDF
    In this research we make use of historical wind direction observations to assemble an instrumental upwelling intensity index (the so-called Directional Upwelling Index [DUI]) for the coast of Northwest Africa between 26 degrees and 33 degrees N and from 1825 to 2014. The DUI is defined as the persistence of the alongshore winds at the coast and unlike other upwelling indices, it relies on observed wind direction solely, avoiding the suspected bias toward increasing wind speed of historical wind observations documented in previous research. We have found that between June and October, when the upwelling intensity in the area is at its seasonal maximum, the persistence of the north-easterlies measured by the DUI is significantly related to the alongshore wind stress and subsequently with Sea Surface Temperature anomalies at the coast of NW Africa. The analysis of the DUI record does not display a consistent long-term trend but an oscillatory behavior. At interannual time scales this variability can be linked to the changes in the strength and location of the subtropical north Atlantic high-pressure center and at multidecadal scales, the upwelling seems mainly driven by the Atlantic Multidecadal Variability through the modulation exerted by this climatic pattern on the intensity of the Saharan low

    Impact of equatorial Atlantic variability on ENSO predictive skill

    Get PDF
    El Niño-Southern Oscillation (ENSO) is a key mode of climate variability with worldwide climate impacts. Recent studies have highlighted the impact of other tropical oceans on its variability. In particular, observations have demonstrated that summer Atlantic Niños (Niñas) favor the development of Pacific Niñas (Niños) the following winter, but it is unclear how well climate models capture this teleconnection and its role in defining the seasonal predictive skill of ENSO. Here we use an ensemble of seasonal forecast systems to demonstrate that a better representation of equatorial Atlantic variability in summer and its lagged teleconnection mechanism with the Pacific relates to enhanced predictive capacity of autumn/winter ENSO. An additional sensitivity study further shows that correcting SST variability in equatorial Atlantic improves different aspects of forecast skill in the Tropical Pacific, boosting ENSO skill. This study thus emphasizes that new efforts to improve the representation of equatorial Atlantic variability, a region with long standing systematic model biases, can foster predictive skill in the region, the Tropical Pacific and beyond, through the global impacts of ENSO

    Impact of dynamical regionalization on precipitation biases and teleconnections over West Africa

    Get PDF
    West African societies are highly dependent on the West African Monsoon (WAM). Thus, a correct representation of the WAM in climate models is of paramount importance. In this article, the ability of 8 CMIP5 historical General Circulation Models (GCMs) and 4 CORDEX-Africa Regional Climate Models (RCMs) to characterize the WAM dynamics and variability is assessed for the period July-August-September 1979-2004. Simulations are compared with observations. Uncertainties in RCM performance and lateral boundary conditions are assessed individually. Results show that both GCMs and RCMs have trouble to simulate the northward migration of the Intertropical Convergence Zone in boreal summer. The greatest bias improvements are obtained after regionalization of the most inaccurate GCM simulations. To assess WAM variability, a Maximum Covariance Analysis is performed between Sea Surface Temperature and precipitation anomalies in observations, GCM and RCM simulations. The assessed variability patterns are: El Nio-Southern Oscillation (ENSO); the eastern Mediterranean (MED); and the Atlantic Equatorial Mode (EM). Evidence is given that regionalization of the ENSO-WAM teleconnection does not provide any added value. Unlike GCMs, RCMs are unable to precisely represent the ENSO impact on air subsidence over West Africa. Contrastingly, the simulation of the MED-WAM teleconnection is improved after regionalization. Humidity advection and convergence over the Sahel area are better simulated by RCMs. Finally, no robust conclusions can be determined for the EM-WAM teleconnection, which cannot be isolated for the 1979-2004 period. The novel results in this article will help to select the most appropriate RCM simulations to study WAM teleconnections

    A Review of ENSO Influence on the North Atlantic. A Non-Stationary Signal

    Get PDF
    The atmospheric seasonal cycle of the North Atlantic region is dominated by meridional movements of the circulation systems: from the tropics, where the West African Monsoon and extreme tropical weather events take place, to the extratropics, where the circulation is dominated by seasonal changes in the jetstream and extratropical cyclones. Climate variability over the North Atlantic is controlled by various mechanisms. Atmospheric internal variability plays a crucial role in the mid-latitudes. However, El Niño-Southern Oscillation (ENSO) is still the main source of predictability in this region situated far away from the Pacific. Although the ENSO influence over tropical and extra-tropical areas is related to different physical mechanisms, in both regions this teleconnection seems to be non-stationary in time and modulated by multidecadal changes of the mean flow. Nowadays, long observational records (greater than 100 years) and modeling projects (e.g., CMIP) permit detecting non-stationarities in the influence of ENSO over the Atlantic basin, and further analyzing its potential mechanisms. The present article reviews the ENSO influence over the Atlantic region, paying special attention to the stability of this teleconnection over time and the possible modulators. Evidence is given that the ENSO–Atlantic teleconnection is weak over the North Atlantic. In this regard, the multidecadal ocean variability seems to modulate the presence of teleconnections, which can lead to important impacts of ENSO and to open windows of opportunity for seasonal predictability

    Brentuximab vedotin in the treatment of cutaneous T-cell lymphomas: Data from the Spanish Primary Cutaneous Lymphoma Registry

    Get PDF
    [Background] Brentuximab vedotin (BV) has been approved for CD30-expressing cutaneous T-cell lymphoma (CTCL) after at least one previous systemic treatment. However, real clinical practice is still limited.[Objectives] To evaluate the response and tolerance of BV in a cohort of patients with CTCL.[Methods] We analysed CTCL patients treated with BV from the Spanish Primary Cutaneous Lymphoma Registry (RELCP).[Results] Sixty-seven patients were included. There were 26 females and the mean age at diagnosis was 59 years. Forty-eight were mycosis fungoides (MF), 7 Sézary syndrome (SS) and 12 CD30+ lymphoproliferative disorders (CD30 LPD). Mean follow-up was 18 months. Thirty patients (45%) showed at least 10% of CD30+ cells among the total lymphocytic infiltrate. The median number of BV infusions received was 7. The overall response rate (ORR) was 67% (63% in MF, 71% in SS and 84% in CD30 LPD). Ten of 14 patients with folliculotropic MF (FMF) achieved complete or partial response (ORR 71%). The median time to response was 2.8 months. During follow-up, 36 cases (54%) experienced cutaneous relapse or progression. The median progression free survival (PFS) was 10.3 months. The most frequent adverse event was peripheral neuropathy (PN) (57%), in most patients (85%), grades 1 or 2.[Conclusions] These results confirm the efficacy and safety of BV in patients with advanced-stage MF, and CD30 LPD. In addition, patients with FMF and SS also showed a favourable response. Our data suggest that BV retreatment is effective in a proportion of cases.The Spanish Primary Cutaneous Lymphoma Registry (RELCP) is promoted by the Fundación Piel Sana Academia Española de Dermatología y Venereología, which received an unrestricted grant support from Kyowa Kirin.Peer reviewe
    corecore