5 research outputs found

    Variables influencing wearable sensor outcome estimates in individuals with stroke and incomplete spinal cord injury: a pilot investigation validating two research grade sensors

    No full text
    Abstract Background Monitoring physical activity and leveraging wearable sensor technologies to facilitate active living in individuals with neurological impairment has been shown to yield benefits in terms of health and quality of living. In this context, accurate measurement of physical activity estimates from these sensors are vital. However, wearable sensor manufacturers generally only provide standard proprietary algorithms based off of healthy individuals to estimate physical activity metrics which may lead to inaccurate estimates in population with neurological impairment like stroke and incomplete spinal cord injury (iSCI). The main objective of this cross-sectional investigation was to evaluate the validity of physical activity estimates provided by standard proprietary algorithms for individuals with stroke and iSCI. Two research grade wearable sensors used in clinical settings were chosen and the outcome metrics estimated using standard proprietary algorithms were validated against designated golden standard measures (Cosmed K4B2 for energy expenditure and metabolic equivalent and manual tallying for step counts). The influence of sensor location, sensor type and activity characteristics were also studied. Methods 28 participants (Healthy (n = 10); incomplete SCI (n = 8); stroke (n = 10)) performed a spectrum of activities in a laboratory setting using two wearable sensors (ActiGraph and Metria-IH1) at different body locations. Manufacturer provided standard proprietary algorithms estimated the step count, energy expenditure (EE) and metabolic equivalent (MET). These estimates were compared with the estimates from gold standard measures. For verifying validity, a series of Kruskal Wallis ANOVA tests (Games-Howell multiple comparison for post-hoc analyses) were conducted to compare the mean rank and absolute agreement of outcome metrics estimated by each of the devices in comparison with the designated gold standard measurements. Results The sensor type, sensor location, activity characteristics and the population specific condition influences the validity of estimation of physical activity metrics using standard proprietary algorithms. Conclusions Implementing population specific customized algorithms accounting for the influences of sensor location, type and activity characteristics for estimating physical activity metrics in individuals with stroke and iSCI could be beneficial

    Additional file 2: of Variables influencing wearable sensor outcome estimates in individuals with stroke and incomplete spinal cord injury: a pilot investigation validating two research grade sensors

    No full text
    FigureS1. Sample acceleration data. Acceleration (triaxial) from ActiGraphs strapped to arm, waist and ankle during a 50 step walk test from a representative healthy, iSCI and stroke participants. Note: The duration for the 50 step walk test is different across the groups. (PNG 93 kb

    Additional file 1: of Variables influencing wearable sensor outcome estimates in individuals with stroke and incomplete spinal cord injury: a pilot investigation validating two research grade sensors

    No full text
    tables with post-hoc analysis. Description:Table ST1. Games-Howell multiple comparison post-hoc test to assess absolute agreement (EE estimates in healthy control group). Table ST2. Games-Howell multiple comparison post-hoc test to assess absolute agreement (MET estimates in healthy control group). Table ST3. Games-Howell multiple comparison post-hoc test to assess absolute agreement (EE estimates in iSCI control group). Table ST4. Games-Howell multiple comparison post-hoc test to assess absolute agreement (MET estimates in iSCI control group). Table ST5. Games-Howell multiple comparison post-hoc test to assess absolute agreement (EE estimates in stroke group with right impairment). Table ST6. Games-Howell multiple comparison post-hoc test to assess absolute agreement (MET estimates in stroke group with right impairment). Table ST7. Games-Howell multiple comparison post-hoc test to assess absolute agreement (EE estimates in stroke group with left impairment). Table ST8. Games-Howell multiple comparison post-hoc test to assess absolute agreement (MET estimates in stroke group with left impairment). (DOCX 41kb

    Sleep Monitoring during Acute Stroke Rehabilitation: Toward Automated Measurement Using Multimodal Wireless Sensors

    No full text
    Sleep plays a critical role in stroke recovery. However, there are limited practices to measure sleep for individuals with stroke, thus inhibiting our ability to identify and treat poor sleep quality. Wireless, body-worn sensors offer a solution for continuous sleep monitoring. In this study, we explored the feasibility of (1) collecting overnight biophysical data from patients with subacute stroke using a simple sensor system and (2) constructing machine-learned algorithms to detect sleep stages. Ten individuals with stroke in an inpatient rehabilitation hospital wore two wireless sensors during a single night of sleep. Polysomnography served as ground truth to classify different sleep stages. A population model, trained on data from multiple patients and tested on data from a separate patient, performed poorly for this limited sample. Personal models trained on data from one patient and tested on separate data from the same patient demonstrated markedly improved performance over population models and research-grade wearable devices to detect sleep/wake. Ultimately, the heterogeneity of biophysical signals after stroke may present a challenge in building generalizable population models. Personal models offer a provisional method to capture high-resolution sleep metrics from simple wearable sensors by leveraging a single night of polysomnography data
    corecore