5 research outputs found

    Time is a stronger predictor of microbiome community composition than tissue in external mucosal surfaces of Atlantic salmon (Salmo salar) reared in a semi-natural freshwater environment

    Get PDF
    Open Access via the Elsevier Agreement This work was supported by the UKRI project ROBUSTSMOLT [grant numbers BBSRC BB/S004270/1 and BB/S004432/1]. There was also co-funding from the Scottish Aquaculture Innovation Centre.Peer reviewedPublisher PD

    A Temporally Dynamic Gut Microbiome in Atlantic Salmon During Freshwater Recirculating Aquaculture System (RAS) Production and Post-seawater Transfer

    Get PDF
    This study was funded by the UKRI project ROBUSTSMOLT (BBSRC BB/S004270/1 and BB/S004432/1). There was also cofunding from the Scottish Aquaculture Innovation Centre. ACKNOWLEDGMENTS The authors would like to thank John Richmond and staff at MOWI and the Centre for Genome Enabled Biology and Medicine (CGEBM) at the University of Aberdeen, particularly Dr. Ewan Campbell, for help with amplification protocols, conducting 16S library preparation and sequencing. The datasets presented in this study can be found in online repositories. The names of the repository/repositories and accession number(s) can be found below: https://www.ncbi.nlm.nih.gov/bioproject/PRJNA729215.Peer reviewedPublisher PD

    Imprinting methylation predicts hippocampal volumes and hyperintensities and the change with age in later life.

    Get PDF
    Funder: Rural and Environment Science and Analytical Services Division; doi: http://dx.doi.org/10.13039/100011310Epigenetic imprinting is important for neurogenesis and brain function. Hippocampal volumes and brain hyperintensities in late life have been associated with early life circumstances. Epigenetic imprinting may underpin these associations. Methylation was measured at 982 sites in 13 imprinted locations in blood samples from a longitudinal cohort by bisulphite amplicon sequencing. Hippocampal volumes and hyperintensities were determined at age 64y and 72y using MRI. Hyperintensities were determined in white matter, grey matter and infratentorial regions. Permutation methods were used to adjust for multiple testing. At 64y, H19/IGF2 and NESPAS methylation predicted hippocampal volumes. PEG3 predicted hyperintensities in hippocampal grey matter, and white matter. GNASXL predicted grey matter hyperintensities. Changes with age were predicted for hippocampal volume (MEST1, KvDMR, L3MBTL, GNASXL), white matter (MEST1, PEG3) and hippocampal grey matter hyperintensities (MCTS2, GNASXL, NESPAS, L3MBTL, MCTS2, SNRPN, MEST1). Including childhood cognitive ability, years in education, or socioeconomic status as additional explanatory variables in regression analyses did not change the overall findings. Imprinting methylation in multiple genes predicts brain structures, and their change over time. These findings are potentially relevant to the development of novel tests of brain structure and function across the life-course, strategies to improve cognitive outcomes, and our understanding of early influences on brain development and function

    Temporal changes in skin and gill microbiomes of Atlantic salmon in a recirculating aquaculture system โ€“ Why do they matter?

    Get PDF
    Mucosal surfaces are key components of teleost health, providing defence against opportunistic pathogens and other insults. Maintaining the integrity of mucosal surfaces and their associated microbial communities, especially the gill and skin that have large surface areas exposed to the environment is essential. Production of Atlantic salmon in land-based recirculating aquaculture systems (RAS) has increased significantly in recent years as it allows greater control over stability of the environment in which fish are reared, reduces water demand and minimises environmental impacts. However, little is known about the impact of the RAS environment upon the temporal dynamics of skin and gill mucosal microbiomes. In this study we examined microbial communities in gill mucus, skin mucus and rearing water throughout freshwater (FW) RAS production, and at 1-week and 4-weeks following transfer to seawater (SW) in open cage production using 16S rRNA sequencing. Microbial diversity and richness in skin and gill mucus of fish reared in a RAS system were temporally dynamic. Dynamics in richness and diversity were similar in the two mucosal tissues, and to some extent also mirrored that of the surrounding water. Dysbiosis indicated by an abrupt decline in diversity during FW production coincided with an increase in the relative abundance of two taxa belonging to the RAS-biofilter-associated nitrogen-cycling genus Hydrogenophaga in RAS tank water and this was also observed in gill and skin mucus. Extensive overlap in core taxa was observed between gill and skin mucus, but host-specific cores were non-existent during the dysbiotic event with all cores present in the rearing water. Diversity remained stable during the transition from FW to SW, but distinct community composition and core taxa were observed in the two environments. Although RAS are closely controlled, significant temporal variation could be observed in temperature as well as levels of CO2 and nitrogen compounds, reflecting the increasing biological load within the system over time. The results presented here suggest that, in terms of microbiomes, dysbiosis may occur in both the RAS environment and fish mucosal surfaces over time, but microbial communities have the capability to recover
    corecore