608 research outputs found

    Magnetic fluctuations from stripes in cuprates

    Full text link
    Within the time-dependent Gutzwiller approximation for the Hubbard model we compute the magnetic fluctuations of vertical metallic stripes with parameters appropriate for La1.875_{1.875}Ba0.125_{0.125}CuO4_4 (LBCO). For bond- and site-centered stripes the excitation spectra are similar, consisting of a low-energy incommensurate acoustic branch which merges into a ``resonance peak'' at the antiferromagnetic wave vector and several high-energy optical branches. The acoustic branch is similar to the result of theories assuming localized spins whereas the optical branches are significantly different. Results are in good agreement with a recent inelastic neutron study of LBCO.Comment: 4 pages, 2 eps figure

    Does the Heisenberg model describe the multimagnon spin dynamics in antiferromagnetic CuO layers ?

    Full text link
    We compute the absorption spectrum for multimagnon excitations assisted by phonons in insulating layered cuprates using exact diagonalization in clusters of up to 32 sites. The resulting line shape is very sensitive to the underlying magnetic Hamiltonian describing the spin dynamics. For the usual Heisenberg description of undoped Cu-O planes we find, in accordance with experiment, a two-magnon peak followed by high energy side bands. However the relative weight of the side bands is too small to reproduce the experiment. An extended Heisenberg model including a sizable four-site cyclic exchange term is shown to be consistent with the experimental data.Comment: To appear in Physical Review Letter

    Theory of Phonon-Assisted Multimagnon Optical Absorption and Bimagnon States in Quantum Antiferromagnets

    Full text link
    We calculate the effective charge for multimagnon infrared (IR) absorption assisted by phonons in a perovskite like antiferromagnet and we compute the spectra for two magnon absorption using interacting spin-wave theory. The full set of equations for the interacting two magnon problem is presented in the random phase approximation for arbitrary total momentum of the magnon pair. The spin wave theory results fit very well the primary peak of recent measured bands in the parent insulating compounds of cuprate superconductors. The line shape is explained as being due to the absorption of one phonon plus a new quasiparticle excitation of the Heisenberg Hamiltonian that consists off a long lived virtual bound state of two magnons (bimagnon). The bimagnon states have well defined energy and momentum in a substantial portion of the Brillouin zone. The higher energy bands are explained as one phonon plus higher multimagnon absorption processes. Other possible experiments for observing bimagnons are proposed. In addition we predict the line shape for the spin one system La2_2NiO4_4.Comment: Modified version of the paper to be published in PR

    Density functional theory with adaptive pair density

    Full text link
    We propose a density functional to find the ground state energy and density of interacting particles, where both the density and the pair density can adjust in the presence of an inhomogeneous potential. As a proof of principle we formulate an a priori exact functional for the inhomogeneous Hubbard model. The functional has the same form as the Gutzwiller approximation but with an unknown kinetic energy reduction factor. An approximation to the functional based on the exact solution of the uniform problem leads to a substantial improvement over the local density approximation

    Odd parity charge density-wave scattering in cuprates

    Full text link
    We investigate a model where superconducting electrons are coupled to a frequency dependent charge-density wave (CDW) order parameter Delta(w). Our approach can reconcile the simultaneous existence of low energy Bogoljubov quasiparticles and high energy electronic order as observed in scanning tunneling microscopy (STM) experiments. The theory accounts for the contrast reversal in the STM spectra between positive and negative bias observed above the pairing gap. An intrinsic relation between scattering rate and inhomogeneities follows naturally.Comment: 5 pages, 3 figure

    Incommensurability and spin excitations of diagonal stripes in cuprates

    Full text link
    Based on the time-dependent Gutzwiller approximation we study the possibility that the diagonal incommensurate spin scattering in strongly underdoped lanthanum cuprates originates from antiferromagnetic domain walls (stripes). Calculation of the dynamic spin response for stripes in the diagonal phase yields the characteristic hour glass dispersion with the crossing of low energy Goldstone and high-energy branches at a characteristic energy Ecross at the antiferromagnetic wave-vector Q_{AF}. The high energy part is close to the parent antiferromagnet. Our results suggest that inelastic neutron scattering experiments on strongly underdoped lanthanum cuprates can be understood as due to a mixture of bond centered and site centered stripe configurations with substantial disorder.Comment: 4 pages, 5 figure

    Coarse grained models in Coulomb-frustrated phase separation

    Full text link
    Competition between interactions on different length scales leads to self-organized textures in classical as well as quantum systems. This pattern formation phenomenon has been invoked to explain some intriguing properties of a large variety of strongly correlated electronic systems that includes for example high temperature superconductors and colossal magnetoresistance manganites. We classify the more common situations in which Coulomb frustrated phase separation can occur and review their properties.Comment: 13 pages, 4 figures. Presented at "Phase Separation in Electronic Systems", Crete 200

    Phase separation frustrated by the long range Coulomb interaction II: Applications

    Full text link
    The theory of first order density-driven phase transitions with frustration due to the long range Coulomb (LRC) interaction develop on paper I of this series is applied to the following physical systems: i) the low density electron gas ii) electronic phase separation in the low density three dimensional t−Jt-J model iii) in the manganites near the charge ordered phase. We work in the approximation that the density within each phase is uniform and we assume that the system separates in spherical drops of one phase hosted by the other phase with the distance between drops and the drop radius much larger than the interparticle distance. For i) we study a well known apparent instability related to a negative compressibility at low densities. We show that this does not lead to macroscopic drop formation as one could expect naively and the system is stable from this point of view. For ii) we find that the LRC interaction significantly modifies the phase diagram favoring uniform phases and mixed states of antiferromagnetic (AF) regions surrounded by metallic regions over AF regions surrounded by empty space. For iii) we show that the dependence of local densities of the phases on the overall density found in paper I gives a non-monotonous behavior of the Curie temperature on doping in agreement with experiments.Comment: Second part of cond-mat/0010092 12 pages, 12 figure
    • …
    corecore