8,797 research outputs found

    The Active Mirror Control of the MAGIC Telescope

    Full text link
    One of the main design goals of the MAGIC telescopes is the very fast repositioning in case of Gamma Ray Burst (GRB) alarms, implying a low weight of the telescope dish. This is accomplished by using a space frame made of carbon fiber epoxy tubes, resulting in a strong but not very rigid support structure. Therefore it is necessary to readjust the individual mirror tiles to correct for deformations of the dish under varying gravitational load while tracking an object. We present the concept of the Active Mirror Control (AMC) as implemented in the MAGIC telescopes and the actual performance reached. Additionally we show that also telescopes using a stiff structure can benefit from using an AMC.Comment: Contribution to the 30th ICRC, Merida, Mexico, July 2007 on behalf of the MAGIC Collaboratio

    A novel engine mount with semi-active dry friction damping

    Get PDF
    In this paper the authors present a semi-active engine mount with a controllable friction damper. The normal force of the friction contact is applied by an electromagnetic actuator and can be varied dynamically. The nonlinear current-force-relation of the actuator is linearized. To account for wear and assembly tolerances, an initialization method is developed, that is based on indirect measurement of the actuators inductance. The friction contact is made up of industrial friction pads and a friction rod of steel. The friction model used is suitable especially for small oscillations of the friction damper. The control policy imitates viscous damping forces that exert a minimum of harmonics. Damping is activated only when necessary. Finally the friction mount is compared to the original mount in a row of test rack experiments and also in the car

    Recent progress of GaAsP HPD development for the MAGIC telescope project

    Full text link
    Today the Hybrid Photon Detector (HPD) is one of the few low light level (LLL) sensors that can provide an excellent single and multiple photoelectron (ph.e.) amplitude resolution. The recently developed HPDs for the MAGIC telescope project with a GaAsP photocathode, namely the R9792U-40, provide a peak quantum efficiency (QE) of more than 50% and a pulse width of ~2 nsec. In addition, the afterpulsing rate of these tubes is very low compared to that of conventional photomultiplier tubes (PMTs), i.e. the value is ~300 times lower. Photocathode aging measurements showed life time of more than 10 years under standard operating conditions of the Cherenkov Telescopes. Here we want to report on the recent progress with the above mentioned HPDs.Comment: Contribution to the 30th ICRC, Merida Mexico, July 2007 on behalf of the MAGIC Collaboratio

    A test for a conjecture on the nature of attractors for smooth dynamical systems

    Full text link
    Dynamics arising persistently in smooth dynamical systems ranges from regular dynamics (periodic, quasiperiodic) to strongly chaotic dynamics (Anosov, uniformly hyperbolic, nonuniformly hyperbolic modelled by Young towers). The latter include many classical examples such as Lorenz and H\'enon-like attractors and enjoy strong statistical properties. It is natural to conjecture (or at least hope) that most dynamical systems fall into these two extreme situations. We describe a numerical test for such a conjecture/hope and apply this to the logistic map where the conjecture holds by a theorem of Lyubich, and to the Lorenz-96 system in 40 dimensions where there is no rigorous theory. The numerical outcome is almost identical for both (except for the amount of data required) and provides evidence for the validity of the conjecture.Comment: Accepted version. Minor modifications from previous versio

    Scaling and synchronization in a ring of diffusively coupled nonlinear oscillators

    Get PDF
    Chaos synchronization in a ring of diffusively coupled nonlinear oscillators driven by an external identical oscillator is studied. Based on numerical simulations we show that by introducing additional couplings at (mNc+1)(mN_c+1)-th oscillators in the ring, where mm is an integer and NcN_c is the maximum number of synchronized oscillators in the ring with a single coupling, the maximum number of oscillators that can be synchronized can be increased considerably beyond the limit restricted by size instability. We also demonstrate that there exists an exponential relation between the number of oscillators that can support stable synchronization in the ring with the external drive and the critical coupling strength ϵc\epsilon_c with a scaling exponent γ\gamma. The critical coupling strength is calculated by numerically estimating the synchronization error and is also confirmed from the conditional Lyapunov exponents (CLEs) of the coupled systems. We find that the same scaling relation exists for mm couplings between the drive and the ring. Further, we have examined the robustness of the synchronous states against Gaussian white noise and found that the synchronization error exhibits a power-law decay as a function of the noise intensity indicating the existence of both noise-enhanced and noise-induced synchronizations depending on the value of the coupling strength ϵ\epsilon. In addition, we have found that ϵc\epsilon_c shows an exponential decay as a function of the number of additional couplings. These results are demonstrated using the paradigmatic models of R\"ossler and Lorenz oscillators.Comment: Accepted for Publication in Physical Review

    Driver-pressure-impact and response-recovery chains in European rivers: observed and predicted effects on BQEs

    Get PDF
    The report presented in the following is part of the outcome of WISER’s river Workpackage WP5.1 and as such part of the module on aquatic ecosystem management and restoration. The ultimate goal of WP5.1 is to provide guidance on best practice restoration and management to the practitioners in River Basin Management. Therefore, a series of analyses was undertaken, each of which used a part of the WP5.1 database in order to track two major pathways of biological response: 1) the response of riverine biota to environmental pressures (degradation) and 2) the response of biota to the reduction of these impacts (restoration). This report attempts to provide empirical evidence on the environment-biota relationships for both pathways

    Integration of D-dimensional 2-factor spaces cosmological models by reducing to the generalized Emden-Fowler equation

    Get PDF
    The D-dimensional cosmological model on the manifold M=R×M1×M2M = R \times M_{1} \times M_{2} describing the evolution of 2 Einsteinian factor spaces, M1M_1 and M2M_2, in the presence of multicomponent perfect fluid source is considered. The barotropic equation of state for mass-energy densities and the pressures of the components is assumed in each space. When the number of the non Ricci-flat factor spaces and the number of the perfect fluid components are both equal to 2, the Einstein equations for the model are reduced to the generalized Emden-Fowler (second-order ordinary differential) equation, which has been recently investigated by Zaitsev and Polyanin within discrete-group analysis. Using the integrable classes of this equation one generates the integrable cosmological models. The corresponding metrics are presented. The method is demonstrated for the special model with Ricci-flat spaces M1,M2M_1,M_2 and the 2-component perfect fluid source.Comment: LaTeX file, no figure
    corecore