32 research outputs found

    Caracterización rápida de nanotubos de carbono mediante un espectrometro Ramana portátil

    Get PDF
    II Encuentro sobre nanociencia y nanotecnología de investigadores y tecnólogos de la Universidad de Córdoba. NANOUC

    Influencia del estado de agregación en el espectro Raman de nanotubos de carbono monocapa (SWNTs)

    Get PDF
    III Encuentro sobre Nanociencia y Nanotecnología de Investigadores y Tecnólogos Andaluce

    Potencial de las nanopartículas híbridas en química analítica

    Get PDF
    III Encuentro sobre Nanociencia y Nanotecnología de Investigadores y Tecnólogos Andaluce

    Determinación rápida de nanopartículas de oro en muestras ambientales y biológicas

    Get PDF
    II Encuentro sobre nanociencia y nanotecnología de investigadores y tecnólogos de la Universidad de Córdoba. NANOUC

    Analytical contributions to the characterization and determination of nanoparticles

    Get PDF
    Actualmente nos encontramos en plena expansión de la Nanociencia y Nanotecnología. Millones de toneladas de nanopartículas (NPs) se producen anualmente con fines comerciales o como subproductos de la actividad humana. La creciente producción y el uso de nanomateriales conducirán a su acumulación, generando importantes implicaciones negativas para la salud humana y el medio ambiente [1]. Uno de los roles de la Química Analítica en este contexto es el análisis y caracterización de dichas nanopartículas. Si bien puede afirmarse que hay un déficit de técnicas analíticas que permitan su caracterización rápida, la situación se agrava aún más cuando se pretenden determinar en matrices complejas como medioambientales y biológicas. En esta tesis doctoral se ha abordado, por tanto, la síntesis y caracterización de nanoestructuras de naturaleza metálica (Au y Ag) y de carbono (CNTs), así como el desarrollo de metodologías que permitan su determinación en matrices ambientales y biológicas

    Monolithic Solid Based on Single-Walled Carbon Nanohorns: Preparation, Characterization, and Practical Evaluation as a Sorbent

    Get PDF
    A monolithic solid based solely on single walled carbon nanohorns (SWNHs) was prepared without the need of radical initiators or gelators. The procedure involves the preparation of a wet jelly-like system of pristine SWNHs followed by slow drying (48 h) at 25 C. As a result, a robust and stable porous network was formed due to the interaction between SWNHs not only via - and van der Waals interactions, but also via the formation of carbon bonds similar to those observed within dahlia aggregates. Pristine SWNHs and the SWNH monolith were characterized by several techniques, including scanning electron microscopy (SEM), transmission electron microscopy (TEM), confocal laser scanning microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and nitrogen intrusion porosimetry. Taking into account the efficiency of carbon nanoparticles in sorption processes, the potential applicability of the SWNH-monolith in this research field was explored using toluene; m-, p-, and o-xylene; ethylbenzene; and styrene, as target analytes. Detection limits were 0.01 g L�����1 in all cases and the inter-day precision was in the interval 7.4–15.7%. The sorbent performance of the nanostructured monolithic solid was evaluated by extracting the selected compounds from different water samples with recovery values between 81.5% and 116.4%

    Kinematic assessment of subject personification of human body models (THUMS)

    Get PDF
    The goal of this study was to quantify the effect of improving the geometry of a human body model on the accuracy of the predicted kinematics for 4 post-mortem human subject sled tests. Three modifications to the computational human body model THUMS were carried out to evaluate if subject personification can increase the agreement between predicted and measured kinematics of post-mortem human subjects in full frontal and nearside oblique impacts. The modifications consisted of: adjusting the human body model mass to the actual subject mass, morphing it to the actual anthropometry of each subject and finally adjustment of the model initial position to the measured position in selected post-mortem human subject tests. A quantitative assessment of the agreement between predicted and measured response was carried out by means of CORA analysis by comparing the displacement of selected anatomical landmarks (head CoG, T1 and T8 vertebre and H-Point). For all three scenarios, the more similar the human body model was to the anthropometry and posture of the sled tested post-mortem human subject, the more similar the predictions were to the measured responses of the post-mortem human subject, resulting in higher CORA score
    corecore