22 research outputs found

    Shortening of membrane lipid acyl chains compensates for phosphatidylcholine deficiency in choline-auxotroph yeast

    Get PDF
    Phosphatidylcholine (PC) is an abundant membrane lipid component in most eukaryotes, including yeast, and has been assigned multiple functions in addition to acting as building block of the lipid bilayer. Here, by isolating S. cerevisiae suppressor mutants that exhibit robust growth in the absence of PC, we show that PC essentiality is subject to cellular evolvability in yeast. The requirement for PC is suppressed by monosomy of chromosome XV or by a point mutation in the ACC1 gene encoding acetyl-CoA carboxylase. Although these two genetic adaptations rewire lipid biosynthesis in different ways, both decrease Acc1 activity, thereby reducing average acyl chain length. Consistently, soraphen A, a specific inhibitor of Acc1, rescues a yeast mutant with deficient PC synthesis. In the aneuploid suppressor, feedback inhibition of Acc1 through acyl-CoA produced by fatty acid synthase (FAS) results from upregulation of lipid synthesis. The results show that budding yeast regulates acyl chain length by fine-tuning the activities of Acc1 and FAS and indicate that PC evolved by benefitting the maintenance of membrane fluidity

    Metabolic labeling of the bacterial peptidoglycan by functionalized glucosamine

    Get PDF
    N-Acetylglucosamine (GlcNAc) is an essential monosaccharide required in almost all organisms. Fluorescent labeling of the peptidoglycan (PG) on N-acetylglucosamine has been poorly explored. Here, we report on the labeling of the PG with a bioorthogonal handle on the GlcNAc. We developed a facile one-step synthesis of uridine diphosphate N-azidoacetylglucosamine (UDP-GlcNAz) using the glycosyltransferase OleD, followed by in vitro incorporation of GlcNAz into the peptidoglycan precursor Lipid II and fluorescent labeling of the azido group via click chemistry. In a PG synthesis assay, fluorescent GlcNAz-labeled Lipid II was incorporated into peptidoglycan by the DD-transpeptidase activity of bifunctional class A penicillin-binding proteins. We further demonstrate the incorporation of GlcNAz into the PG layer of OleD-expressed bacteria by feeding with 2-chloro-4-nitrophenyl GlcNAz (GlcNAz-CNP). Hence, our labeling method using the heterologous expression of OleD is useful to study PG synthesis and possibly other biological processes involving GlcNAc metabolism in vivo

    Multifaceted Activities of Seven Nanobodies against Complement C4b

    Get PDF
    Cleavage of the mammalian plasma protein C4 into C4b initiates opsonization, lysis, and clearance of microbes and damaged host cells by the classical and lectin pathways of the complement system. Dysregulated activation of C4 and other initial components of the classical pathway may cause or aggravate pathologies, such as systemic lupus erythematosus, Alzheimer disease, and schizophrenia. Modulating the activity of C4b by small-molecule or protein-based inhibitors may represent a promising therapeutic approach for preventing excessive inflammation and damage to host cells and tissue. Here, we present seven nanobodies, derived from llama (Lama glama) immunization, that bind to human C4b (Homo sapiens) with high affinities ranging from 3.2 nM to 14 pM. The activity of the nanobodies varies from no to complete inhibition of the classical pathway. The inhibiting nanobodies affect different steps in complement activation, in line with blocking sites for proconvertase formation, C3 substrate binding to the convertase, and regulator-mediated inactivation of C4b. For four nanobodies, we determined singleparticle cryo-electron microscopy structures in complex with C4b at 3.4-4 Å resolution. The structures rationalize the observed functional effects of the nanobodies and define their mode of action during complement activation. Thus, we characterized seven anti-C4b nanobodies with diverse effects on the classical pathway of complement activation that may be explored for imaging, diagnostic, or therapeutic applications

    Teixobactin kills bacteria by a two-pronged attack on the cell envelope

    Get PDF
    Antibiotics that use novel mechanisms are needed to combat antimicrobial resistance1–3. Teixobactin4 represents a new class of antibiotics with a unique chemical scaffold and lack of detectable resistance. Teixobactin targets lipid II, a precursor of peptidoglycan5. Here we unravel the mechanism of teixobactin at the atomic level using a combination of solid-state NMR, microscopy, in vivo assays and molecular dynamics simulations. The unique enduracididine C-terminal headgroup of teixobactin specifically binds to the pyrophosphate-sugar moiety of lipid II, whereas the N terminus coordinates the pyrophosphate of another lipid II molecule. This configuration favours the formation of a β-sheet of teixobactins bound to the target, creating a supramolecular fibrillar structure. Specific binding to the conserved pyrophosphate-sugar moiety accounts for the lack of resistance to teixobactin4. The supramolecular structure compromises membrane integrity. Atomic force microscopy and molecular dynamics simulations show that the supramolecular structure displaces phospholipids, thinning the membrane. The long hydrophobic tails of lipid II concentrated within the supramolecular structure apparently contribute to membrane disruption. Teixobactin hijacks lipid II to help destroy the membrane. Known membrane-acting antibiotics also damage human cells, producing undesirable side effects. Teixobactin damages only membranes that contain lipid II, which is absent in eukaryotes, elegantly resolving the toxicity problem. The two-pronged action against cell wall synthesis and cytoplasmic membrane produces a highly effective compound targeting the bacterial cell envelope. Structural knowledge of the mechanism of teixobactin will enable the rational design of improved drug candidates

    Teixobactin kills bacteria by a two-pronged attack on the cell envelope

    Get PDF
    Antibiotics that use novel mechanisms are needed to combat antimicrobial resistance1–3. Teixobactin4 represents a new class of antibiotics with a unique chemical scaffold and lack of detectable resistance. Teixobactin targets lipid II, a precursor of peptidoglycan5. Here we unravel the mechanism of teixobactin at the atomic level using a combination of solid-state NMR, microscopy, in vivo assays and molecular dynamics simulations. The unique enduracididine C-terminal headgroup of teixobactin specifically binds to the pyrophosphate-sugar moiety of lipid II, whereas the N terminus coordinates the pyrophosphate of another lipid II molecule. This configuration favours the formation of a β-sheet of teixobactins bound to the target, creating a supramolecular fibrillar structure. Specific binding to the conserved pyrophosphate-sugar moiety accounts for the lack of resistance to teixobactin4. The supramolecular structure compromises membrane integrity. Atomic force microscopy and molecular dynamics simulations show that the supramolecular structure displaces phospholipids, thinning the membrane. The long hydrophobic tails of lipid II concentrated within the supramolecular structure apparently contribute to membrane disruption. Teixobactin hijacks lipid II to help destroy the membrane. Known membrane-acting antibiotics also damage human cells, producing undesirable side effects. Teixobactin damages only membranes that contain lipid II, which is absent in eukaryotes, elegantly resolving the toxicity problem. The two-pronged action against cell wall synthesis and cytoplasmic membrane produces a highly effective compound targeting the bacterial cell envelope. Structural knowledge of the mechanism of teixobactin will enable the rational design of improved drug candidates

    Teixobactin kills bacteria by a two-pronged attack on the cell envelope

    Get PDF
    Antibiotics that use novel mechanisms are needed to combat antimicrobial resistance1–3. Teixobactin4 represents a new class of antibiotics with a unique chemical scaffold and lack of detectable resistance. Teixobactin targets lipid II, a precursor of peptidoglycan5. Here we unravel the mechanism of teixobactin at the atomic level using a combination of solid-state NMR, microscopy, in vivo assays and molecular dynamics simulations. The unique enduracididine C-terminal headgroup of teixobactin specifically binds to the pyrophosphate-sugar moiety of lipid II, whereas the N terminus coordinates the pyrophosphate of another lipid II molecule. This configuration favours the formation of a β-sheet of teixobactins bound to the target, creating a supramolecular fibrillar structure. Specific binding to the conserved pyrophosphate-sugar moiety accounts for the lack of resistance to teixobactin4. The supramolecular structure compromises membrane integrity. Atomic force microscopy and molecular dynamics simulations show that the supramolecular structure displaces phospholipids, thinning the membrane. The long hydrophobic tails of lipid II concentrated within the supramolecular structure apparently contribute to membrane disruption. Teixobactin hijacks lipid II to help destroy the membrane. Known membrane-acting antibiotics also damage human cells, producing undesirable side effects. Teixobactin damages only membranes that contain lipid II, which is absent in eukaryotes, elegantly resolving the toxicity problem. The two-pronged action against cell wall synthesis and cytoplasmic membrane produces a highly effective compound targeting the bacterial cell envelope. Structural knowledge of the mechanism of teixobactin will enable the rational design of improved drug candidates

    The amphiphilic nature of saponins and their effects on artificial and biological membranes and potential consequences for red blood and cancer cells

    Get PDF
    Saponins, amphiphiles of natural origin with numerous biological activities, are widely used in the cosmetic and pharmaceutical industry. Some saponins exhibit relatively selective cytotoxic effects on cancer cells but the tendency of saponins to induce hemolysis limits their anticancer potential. This review focused on the effects of saponin activity on membranes and consequent implications for red blood and cancer cells. This activity seems to be strongly related to the amphiphilic character of saponins that gives them the ability to self-aggregate and interact with membrane components such as cholesterol and phospholipids. Membrane interactions of saponins with artificial membrane models, red blood and cancer cells are reviewed with respect to their molecular structures. The review considered the mechanisms of these membrane interactions and their consequences including the modulation of membrane dynamics, interaction with membrane rafts, and membrane lysis. We summarized current knowledge concerning the mechanisms involved in the interactions of saponins with membrane lipids and examined the structure activity relationship of saponins regarding hemolysis and cancer cell death. A critical analysis of these findings speculates on their potential to further develop new anticancer compounds

    Structural Modifications Controlling Membrane Raft Partitioning and Curvature in Human and Viral Proteins

    No full text
    Membrane proteins and lipids have the capacity to associate into lateral domains in cell membranes through mutual or collective interactions. Lipid rafts are functional lateral domains that are formed through collective interactions of certain lipids and which can include or exclude proteins. These domains have been implicated in cell signaling and protein trafficking and seem to be of importance for virus-host interactions. We therefore want to investigate if raft and viral membrane proteins present similar structural features, and how these features are distributed throughout viruses. For this purpose, we performed a bioinformatics analysis of raft and viral membrane proteins from available online databases and compared them to nonraft proteins. In general, transmembrane proteins of rafts and viruses had higher proportions of palmitoyl and phosphoryl residues compared to nonraft proteins. They differed in terms of transmembrane domain length and thickness, with viral proteins being generally shorter and having a smaller accessible surface area per residue. Nontransmembrane raft proteins had increased amounts of palmitoyl, prenyl, and phosphoryl moieties while their viral counterparts were largely myristoylated and phosphorylated. Several of these structural determinants such as phosphorylation are new to the raft field and are extensively discussed in terms of raft functionality and phase separation. Surprisingly, the proportion of palmitoylated viral transmembrane proteins was inversely correlated to the virus size which indicated the implication of palmitoylation in virus membrane curvature and possibly budding. The current results provide new insights into the raft-virus interplay and unveil possible targets for antiviral compounds

    Myelin-Associated MAL and PLP Are Unusual among Multipass Transmembrane Proteins in Preferring Ordered Membrane Domains

    No full text
    Eukaryotic membranes can be partitioned into lipid-driven membrane microdomains called lipid rafts, which function to sort lipids and proteins in the plane of the membrane. As protein selectivity underlies all functions of lipid rafts, there has been significant interest in understanding the structural and molecular determinants of raft affinity. Such determinants have been described for lipids and single-spanning transmembrane proteins; however, how multipass transmembrane proteins (TMPs) partition between ordered and disordered phases has not been widely explored. Here we used cell-derived giant plasma membrane vesicles (GPMVs) to systematically measure multipass TMP partitioning to ordered membrane domains. Across a set of 24 structurally and functionally diverse multipass TMPs, the large majority (92%) had minimal raft affinity. The only exceptions were two myelin-associated four-pass TMPs, myelin and lymphocyte protein (MAL), and proteo lipid protein (PLP). We characterized the potential mechanisms for their exceptional raft affinity and observed that PLP requires cholesterol and sphingolipids for optimal association with ordered membrane domains and that PLP and MAL appear to compete for cholesterol-mediated raft affinity. These observations suggest broad conclusions about the composition of ordered membrane domains in cells and point to previously unrecognized drivers of raft affinity for multipass transmembrane proteins
    corecore