4 research outputs found

    Lipopeptides as anti-infectives: a practical perspective

    Get PDF
    AbstractLipopeptide antibiotics represent an old class of antibiotics that were discovered over 50 years ago, which includes the old polymyxins but also new entries, such as the recently approved daptomycin. They generally consist of a hydrophilic cyclic peptide portion attached to a fatty acid chain which facilitates insertion into the lipid bilayer of bacterial membranes. This review presents an overview of this class of antibiotics, focusing on their therapeutic applications and putting particular emphasis on chemical modifications introduced to improve their activity

    Photoacoustic imaging of integrin-overexpressing tumors using a novel ICG-based contrast agent in mice

    No full text
    PhotoAcoustic Imaging (PAI) is a biomedical imaging modality currently under evaluation in preclinical and clinical settings. In this work, ICG is coupled to an integrin binding vector (ICG-RGD) to combine the good photoacoustic properties of ICG and the favourable αvβ3-binding capabilities of a small RGD cyclic peptidomimetic. ICG-RGD is characterized in terms of physicochemical properties, biodistribution and imaging performance. Tumor uptake was assessed in subcutaneous xenograft mouse models of human glioblastoma (U-87MG, high αvβ3 expression) and epidermoid carcinoma (A431, low αvβ3 expression). ICG and ICG-RGD showed high PA signal in tumors already after 15 min post-injection. At later time points the signal of ICG rapidly decreased, while ICG-RGD showed sustained uptake in U-87MG but not in A431 tumors, likely due to the integrin-mediated retention of the probe. In conclusion, ICG-RGD is a novel targeted contrast agents for PAI with superior biodistribution, tumor uptake properties and diagnostic value compared to ICG. Keywords: Indocyanine green, Tumor targeting, Contrast agents, Photoacoustic imaging, αvβ3-Integrin, Optoacoustic imagin

    Improved synthesis of DA364, a NIR fluorescence RGD probe targeting αvβ3 integrin

    No full text
    Optical imaging (OI) is gaining increasing attention in medicine as a non-invasive diagnostic imaging technology and as a useful tool for image-guided surgery. OI exploits the light emitted in the near-infrared region by fluorescent molecules, able to penetrate living tissues. Cyanines are an important class of fluorescent molecules and by their conjugation to peptides it is possible to achieve optical imaging of tumours by selective targeting. We report here the improvements obtained in the synthesis of DA364, a small fluorescent probe (1.5 kDa) prepared by conjugation of a pentamethine cyanine Cy5.5 to an RGD peptidomimetic, which can target tumour cells overexpressing integrin αvβ3 receptors

    Inhibition of Herpes Simplex Virus Type 1 and Type 2 Infections by Peptide-Derivatized Dendrimers ▿ †

    No full text
    In response to the need for new antiviral agents, dendrimer-based molecules have been recognized as having a large number of potential therapeutic applications. They include peptide-derivatized dendrimers, which are hyperbranched synthetic well-defined molecules which consist of a peptidyl branching core and covalently attached surface functional peptides. However, few studies have addressed their applications as direct-acting antiviral agents. Here, we report on the ability of the peptide dendrimer SB105 and its derivative, SB105_A10, to directly inhibit herpes simplex virus 1 (HSV-1) and HSV-2 in vitro replication, with favorable selective indexes discerned for both compounds. An analysis of their mode of action revealed that SB105 and SB105_A10 prevent HSV-1 and HSV-2 attachment to target cells, whereas SB104, a dendrimer with a different amino acid sequence within the functional group and minimal antiviral activity, was ineffective in blocking HSV attachment. Moreover, both SB105 and SB105_A10 retained their ability to inhibit HSV adsorption at pH 3.0 and 4.0 and in the presence of 10% human serum proteins, conditions mimicking the physiological properties of the vagina, a potential therapeutic location for such compounds. The inhibition of HSV adsorption is likely to stem from the ability of SB105_A10 to bind to the glycosaminoglycan moiety of cell surface heparan sulfate proteoglycans, thereby blocking virion attachment to target cells. Finally, when combined with acyclovir in checkerboard experiments SB105_A10 exhibited highly synergistic activity. Taken together, these findings suggest that SB105 and SB105_A10 are promising candidates for the development of novel topical microbicides for the prevention of HSV infections
    corecore