10 research outputs found

    Galvanic deposition of Chitosan-AgNPs as antibacterial coating

    Get PDF
    Thanks to mechanical properties similar human bones, metallic materials represent the best choice for fabrication of orthopedic implants. Although metals could be widely used in the field of biomedical implants, corrosion phenomena could occur, causing metal ions releasing around periprosthetic tissues leading, in the worst cases, to the development of infections. In these cases, patients need prolonged antibiotic therapies that may cause bacterial resistance. Preventing bacterial colonization of biomedical surfaces is the key to limiting the spread of infections. Antibacterial coatings have become a very active field of research, strongly stimulated by the increasing urgency of identifying alternatives to the traditional administration of antibiotics. Nowadays, the research was focused on coating science to deal with these issues. In particular, the development of the antibacterial composite coatings could be a viable way to provide not only a corrosion resistance but also an antibacterial action and biocompatibility. Chitosan is a great biomaterial used in medicine. It is a natural bioactive polymer and is the second most abundant in nature polysaccharide after cellulose. Chitosan comes from the deacetylation of chitin, a homopolymer of beta-(1-4)-N-acetyl-D-glucosamine, derived from exoskeleton of crustaceans. It is high biocompatible and it is also used in drug delivery. In addition, chitosan has chelating properties due to the amino groups of polysaccharide that are responsible of selective chelation with metal ions. In particular, the attention has been paid to silver nanoparticles for their high stability, low toxicity, biocompatibility and antibacterial properties. These ones are incorporated in polymeric matrix (e.g. chitosan) and they are capable to interact physically with cell walls of bacteria. In this study Chitosan-Silver nanoparticles composite coating on AISI 304L was investigated. These coatings were realized by an alternative method of deposition respect to traditional ones based on galvanic coupling. This process doesn’t request any external power supply and is very easy to carried out. The difference of the electrochemical redox potential between the substrate (cathode) and a sacrificial anode is the pivotal role of the process. Deposition rate is controlled by the ratio of cathodic and anodic area. In practice, electrons generated by anode corrosion flow towards to more noble metal thanks to a short-circuit. As soon electrons arrive to the cathode, the base electrogeneration reactions of nitrate ions and water molecules occur. Production of hydroxyl ions causes an increasing of pH at substrate/solution interface. Hence, deprotonation of amine group leads precipitation of chitosan (pKa=6.4) onto surface. At the same time, silver nanoparticles are incorporated in polymeric matrix of chitosan. Physical-chemical characterizations of the coatings were carried out in order to investigate morphology and chemical composition. In addition, corrosion tests (potentiodynamic polarization and electrochemical impedance spectroscopy) were executed in a simulated body fluid to scrutinize the corrosion resistance. Furthermore, the release of silver nanoparticles from coating in SBF were studied

    Galvanic Deposition of Calcium Phosphate/Bioglass Composite Coating on AISI 316L

    Get PDF
    Calcium phosphate/Bioglass composite coatings on AISI 316L were investigated with regard to their potential role as a beneficial coating for orthopedic implants. These coatings were realized by the galvanic co-deposition of calcium phosphate compounds and Bioglass particles. A different amount of Bioglass 45S5 was used to study its effect on the performance of the composite coatings. The morphology and chemical composition of the coatings were investigated before and after their aging in simulated body fluid. The coatings uniformly covered the AISI 316L substrate and consisted of a brushite and hydroxyapatite mixture. Both phases were detected using X-ray diffraction and Raman spectroscopy. Additionally, both analyses revealed that brushite is the primary phase. The presence of Bioglass was verified through energy-dispersive X-ray spectroscopy, which showed the presence of a silicon peak. During aging in simulated body fluid, the coating was subject to a dynamic equilibrium of dissolution/reprecipitation with total conversion in only the hydroxyapatite phase. Corrosion tests performed in simulated body fluid at different aging times revealed that the coatings made with 1 g/L of Bioglass performed best. These samples have a corrosion potential of −0.068V vs. Ag/AgCl and a corrosion current density of 8.87 × 10−7 A/cm2. These values are better than those measured for bare AISI 316L (−0.187 V vs. Ag/AgCl and 2.52 × 10−6 A/cm2, respectively) and remained superior to pure steel for all 21 days of aging. This behavior indicated the good protection of the coating against corrosion phenomena, which was further confirmed by the very low concentration of Ni ions (0.076 ppm) released in the aging solution after 21 days of immersion. Furthermore, the absence of cytotoxicity, verified through cell viability assays with MC3T3-E1 osteoblastic cells, proves the biocompatibility of the coatings

    Green and Integrated Wearable Electrochemical Sensor for Chloride Detection in Sweat

    Get PDF
    Wearable sensors for sweat biomarkers can provide facile analyte capability and monitoring for several diseases. In this work, a green wearable sensor for sweat absorption and chloride sensing is presented. In order to produce a sustainable device, polylactic acid (PLA) was used for both the substrate and the sweat absorption pad fabrication. The sensor material for chloride detection consisted of silver-based reference, working, and counter electrodes obtained from upcycled compact discs. The PLA substrates were prepared by thermal bonding of PLA sheets obtained via a flat die extruder, prototyped in single functional layers via CO2 laser cutting, and bonded via hot-press. The effect of cold plasma treatment on the transparency and bonding strength of PLA sheets was investigated. The PLA membrane, to act as a sweat absorption pad, was directly deposited onto the membrane holder layer by means of an electrolyte-assisted electrospinning technique. The membrane adhesion capacity was investigated by indentation tests in both dry and wet modes. The integrated device made of PLA and silver-based electrodes was used to quantify chloride ions. The calibration tests revealed that the proposed sensor platform could quantify chloride ions in a sensitive and reproducible way. The chloride ions were also quantified in a real sweat sample collected from a healthy volunteer. Therefore, we demonstrated the feasibility of a green and integrated sweat sensor that can be applied directly on human skin to quantify chloride ions

    ExoClock project: an open platform for monitoring the ephemerides of Ariel targets with contributions from the public

    Get PDF
    The Ariel mission will observe spectroscopically around 1000 exoplanets to further characterise their atmospheres. For the mission to be as efficient as possible, a good knowledge of the planets’ ephemerides is needed before its launch in 2028. While ephemerides for some planets are being refined on a per-case basis, an organised effort to collectively verify or update them when necessary does not exist. In this study, we introduce the ExoClock project, an open, integrated and interactive platform with the purpose of producing a confirmed list of ephemerides for the planets that will be observed by Ariel. The project has been developed in a manner to make the best use of all available resources: observations reported in the literature, observations from space instruments and, mainly, observations from ground-based telescopes, including both professional and amateur observatories. To facilitate inexperienced observers and at the same time achieve homogeneity in the results, we created data collection and validation protocols, educational material and easy to use interfaces, open to everyone. ExoClock was launched in September 2019 and now counts over 140 participants from more than 15 countries around the world. In this release, we report the results of observations obtained until the 15h of April 2020 for 120 Ariel candidate targets. In total, 632 observations were used to either verify or update the ephemerides of 84 planets. Additionally, we developed the Exoplanet Characterisation Catalogue (ECC), a catalogue built in a consistent way to assist the ephemeris refinement process. So far, the collaborative open framework of the ExoClock project has proven to be highly efficient in coordinating scientific efforts involving diverse audiences. Therefore, we believe that it is a paradigm that can be applied in the future for other research purposes, too

    Behavior of Calcium Phosphate–Chitosan–Collagen Composite Coating on AISI 304 for Orthopedic Applications

    Get PDF
    Calcium phosphate/chitosan/collagen composite coating on AISI 304 stainless steel was investigated. Coatings were realized by galvanic coupling that occurs without an external power supply because it begins with the coupling between two metals with different standard electrochemical potentials. The process consists of the co-deposition of the three components with the calcium phosphate crystals incorporated into the polymeric composite of chitosan and collagen. Physical-chemical characterizations of the samples were executed to evaluate morphology and chemical composition. Morphological analyses have shown that the surface of the stainless steel is covered by the deposit, which has a very rough surface. XRD, Raman, and FTIR characterizations highlighted the presence of both calcium phosphate compounds and polymers. The coatings undergo a profound variation after aging in simulated body fluid, both in terms of composition and structure. The tests, carried out in simulated body fluid to scrutinize the corrosion resistance, have shown the protective behavior of the coating. In particular, the corrosion potential moved toward higher values with respect to uncoated steel, while the corrosion current density decreased. This good behavior was further confirmed by the very low quantification of the metal ions (practically absent) released in simulated body fluid during aging. Cytotoxicity tests using a pre-osteoblasts MC3T3-E1 cell line were also performed that attest the biocompatibility of the coating

    Effect of Polyhydroxyalkanoate (PHA) Concentration on Polymeric Scaffolds Based on Blends of Poly-L-Lactic Acid (PLLA) and PHA Prepared via Thermally Induced Phase Separation (TIPS)

    No full text
    Hybrid porous scaffolds composed of both natural and synthetic biopolymers have demonstrated significant improvements in the tissue engineering field. This study investigates for the first time the fabrication route and characterization of poly-L-lactic acid scaffolds blended with polyhydroxyalkanoate up to 30 wt%. The hybrid scaffolds were prepared by a thermally induced phase separation method starting from ternary solutions. The microstructure of the hybrid porous structures was analyzed by scanning electron microscopy and related to the blend composition. The porosity and the wettability of the scaffolds were evaluated through gravimetric and water contact angle measurements, respectively. The scaffolds were also characterized in terms of the surface chemical properties via Fourier transform infrared spectroscopy in attenuated total reflectance. The mechanical properties were analyzed through tensile tests, while the crystallinity of the PLLA/PHA scaffolds was investigated by differential scanning calorimetry and X-ray diffraction

    CaP-Bioglass composite coating by galvanic deposition

    No full text
    Orthopedic devices are increasingly used in our life to improve the health of patients after bone fractures due to accidents, aging, or sports injuries. Metallic materials (i.e. stainless steel, titanium alloys chromium alloys) are widely employed to fabricate prostheses, screws, and osteosynthesis plates. Although metals could be good mechanical properties like human bone, corrosion phenomena could occur, causing in the worst cases the failure of orthopedic implants. In addition, metal ions released around periprosthetic tissues could arise allergenic and cancerogenic effects. Nowadays, the research was focused on coating science to deal with these issues. In particular, the development of composite coatings could be a viable way to provide not only corrosion resistance but also great biocompatibility with bone tissues. Calcium Phosphate-based biomaterials such as hydroxyapatite (Ca 10 (PO 4 ) 6 (OH) 2 ) are widely used in orthopedics since their chemical composition is close to the mineralized fraction of bones. There are characterized by low mechanical stability and brittleness. However, it can be applied to coating [1], thanks to its biocompatibility and osteoconductivity. Bioglass is a family of bioactive glasses composed of silicon dioxide, sodium oxide, calcium oxide, and phosphorous pentoxide. This biomaterial has aroused great technological interest as a coating material [2] and it exhibits different degrees of bioactivity, which strongly depends on its composition [3]. Calcium Phosphate-Bioglass composite coating on AISI 316L was investigated in this study. These coatings were realized by an alternative method of deposition compared to traditional ones based on galvanic coupling. This process doesn’t demand any external power supply and it is very easy to carry out. The key role of the entire process consists in the difference of the electrochemical redox potential between the substrate (cathode) and a sacrificial anode [4-6]. The ratio between cathodic and anodic exposed areas drives the rate of the process. Briefly, electrons generated by dissolution of anode flow towards to more noble metal thanks to an external short-circuit. As soon as electrons arrive at the cathode, the base electrogeneration reactions of nitrate ions and water molecules occur. The effect of these reactions is the increase of pH at the interface between substrate and solution that generate calcium phosphate. Suspended bioglass particles in solution by stirring were entrapped between calcium phosphate crystals during galvanic deposition. Physical-chemical characterizations of the coatings were carried out in order to investigate the morphology and chemical composition. In addition, corrosion tests (potentiodynamic polarization and electrochemical impedance spectroscopy) were executed in Simulated Body Fluid (SBF) to scrutinize the corrosion resistance. Furthermore, cytotoxicity was been investigated through cell viability assays with MC3T3-E1 osteoblastic cells

    New Variables Stars Discovered by Data Minig Images Taken during Recent Asteroid Photometric Observations. II. Results from July 2015 through December 2016

    No full text
    This paper follows the previous publication of new variables discovered at Astronomical Observatory, DSFTA, University of Siena, while observing asteroids in order to determine their rotational periods. Usually, this task requires time series images acquisition on a single field for as long as possible on a few nights not necessarily consecutive. Checking continually this “goldmine” allowed us to discover 57 variable stars not yet listed in catalogues or databases. While most of the new variables are eclipsing binaries, a few belong to the RR Lyrae or delta Scuti class. Since asteroid work is definitely a time-consuming activity, coordinated campaigns of follow-up with other observatories have been fundamental in order to determine the elements of the ephemeris and sometimes the right subclass of variability. Further observations of these new variables are therefore strongly encouraged in order to better characterize these stars, especially pulsating ones whose data combined with those taken during professional surveys seem to suggest the presence of light curve amplitude and period variations

    ExoClock project: an open platform for monitoring the ephemerides of Ariel targets with contributions from the public

    No full text
    The Ariel mission will observe spectroscopically around 1000 exoplanets to further characterise their atmospheres. For the mission to be as efficient as possible, a good knowledge of the planets’ ephemerides is needed before its launch in 2028. While ephemerides for some planets are being refined on a per-case basis, an organised effort to collectively verify or update them when necessary does not exist. In this study, we introduce the ExoClock project, an open, integrated and interactive platform with the purpose of producing a confirmed list of ephemerides for the planets that will be observed by Ariel. The project has been developed in a manner to make the best use of all available resources: observations reported in the literature, observations from space instruments and, mainly, observations from ground-based telescopes, including both professional and amateur observatories. To facilitate inexperienced observers and at the same time achieve homogeneity in the results, we created data collection and validation protocols, educational material and easy to use interfaces, open to everyone. ExoClock was launched in September 2019 and now counts over 140 participants from more than 15 countries around the world. In this release, we report the results of observations obtained until the 15h of April 2020 for 120 Ariel candidate targets. In total, 632 observations were used to either verify or update the ephemerides of 84 planets. Additionally, we developed the Exoplanet Characterisation Catalogue (ECC), a catalogue built in a consistent way to assist the ephemeris refinement process. So far, the collaborative open framework of the ExoClock project has proven to be highly efficient in coordinating scientific efforts involving diverse audiences. Therefore, we believe that it is a paradigm that can be applied in the future for other research purposes, too
    corecore