9 research outputs found

    Increased sympathetic and decreased parasympathetic cardiac tone in patients with sleep related alveolar hypoventilation

    Get PDF
    Patients with SRAH exhibited an abnormal cardiac tone during sleep. This fact appears to be related to the severity of nocturnal oxygen desaturation. Moreover, there were no differences between OSA and SRAH, supporting the hypothesis that autonomic changes in OSA are primarily related to a reduced nocturnal oxygen saturation, rather than a consequence of other factors such as nocturnal respiratory event

    Ketamine-induced oscillations in the motor circuit of the rat basal ganglia

    Get PDF
    Oscillatory activity can be widely recorded in the cortex and basal ganglia. This activity may play a role not only in the physiology of movement, perception and cognition, but also in the pathophysiology of psychiatric and neurological diseases like schizophrenia or Parkinson's disease. Ketamine administration has been shown to cause an increase in gamma activity in cortical and subcortical structures, and an increase in 150 Hz oscillations in the nucleus accumbens in healthy rats, together with hyperlocomotion.We recorded local field potentials from motor cortex, caudate-putamen (CPU), substantia nigra pars reticulata (SNr) and subthalamic nucleus (STN) in 20 awake rats before and after the administration of ketamine at three different subanesthetic doses (10, 25 and 50 mg/Kg), and saline as control condition. Motor behavior was semiautomatically quantified by custom-made software specifically developed for this setting.Ketamine induced coherent oscillations in low gamma (~ 50 Hz), high gamma (~ 80 Hz) and high frequency (HFO, ~ 150 Hz) bands, with different behavior in the four structures studied. While oscillatory activity at these three peaks was widespread across all structures, interactions showed a different pattern for each frequency band. Imaginary coherence at 150 Hz was maximum between motor cortex and the different basal ganglia nuclei, while low gamma coherence connected motor cortex with CPU and high gamma coherence was more constrained to the basal ganglia nuclei. Power at three bands correlated with the motor activity of the animal, but only coherence values in the HFO and high gamma range correlated with movement. Interactions in the low gamma band did not show a direct relationship to movement.These results suggest that the motor effects of ketamine administration may be primarily mediated by the induction of coherent widespread high-frequency activity in the motor circuit of the basal ganglia, together with a frequency-specific pattern of connectivity among the structures analyzed

    Oscilaciones cerebrales: papel fisiopatológico y terapéutico en algunas enfermedades neurológicas y psiquiátricas

    Get PDF
    Se usa el término «oscilación o actividad oscilatoria» para referirse a las fluctuaciones rítmicas de los potenciales postsinápticos de un grupo neuronal (potenciales de campo local) o de una región cortical (EEG, electrocorticografía) y también al patrón de descarga rítmico de los potenciales de acción de una neurona o un grupo neuronal. La actividad oscilatoria posibilita la sincronización entre grupos neuronales de la misma área cortical o de áreas distantes entre sí que intervienen en una acción motora, tarea cognitiva o perceptiva. Con frecuencia es motivo de confusión asociar la presencia de actividad oscilatoria con fenómenos de sincronización, ya que ambos fenómenos aunque relacionados no son equivalentes. En patologías neurológicas o psiquiátricas tan distintas como la enfermedad de Parkinson u otros movimientos anormales, la epilepsia o la esquizofrenia se han descrito anomalías de la actividad oscilatoria de distintas estructuras cerebrales o de su sincronización que podrían jugar un papel relevante en su fisiopatología. En esta revisión se discuten estos aspectos haciendo hincapié en su importancia por ser un mecanismo básico del funcionamiento cerebral y un nuevo mecanismo fisiopatólogico de la sintomatología de algunas enfermedades cerebrales.The terms «oscillations» or «oscillatory activity» are frequently used not only to define the rhythmic fluctuations of the postsynaptic potentials of a neuronal group (local field potentials) or a cortical region (EEG, MEG), but also to indicate the rhythmic discharge pattern of action potentials from a neuron or a small group of neurons. Oscillatory activity makes possible the synchronization of different neuronal groups from nearby or distant cortical regions that participate in the same motor, sensory or cognitive task. The presence of oscillatory activity is usually associated to the existence of synchronization, but both phenomena are not necessarily always equivalent. Abnormalities of oscillatory activities or synchronization within or between different brain structures have been described in several neurological and psychiatric diseases; these abnormalities might play a relevant pathophysiological role in Parkinson’s disease (and other movement disorders), schizophrenia or epilepsy. This review discusses all these aspects, with emphasis on their potential role both as a basic mechanism in brain function and as a pathophysiological substrate for some of the symptoms and signs observed in several diseases

    Ketamine-Induced Oscillations in the Motor Circuit of the Rat Basal Ganglia

    Get PDF
    Oscillatory activity can be widely recorded in the cortex and basal ganglia. This activity may play a role not only in the physiology of movement, perception and cognition, but also in the pathophysiology of psychiatric and neurological diseases like schizophrenia or Parkinson's disease. Ketamine administration has been shown to cause an increase in gamma activity in cortical and subcortical structures, and an increase in 150 Hz oscillations in the nucleus accumbens in healthy rats, together with hyperlocomotion

    Increased sympathetic and decreased parasympathetic cardiac tone in patients with sleep related alveolar hypoventilation

    No full text
    Patients with SRAH exhibited an abnormal cardiac tone during sleep. This fact appears to be related to the severity of nocturnal oxygen desaturation. Moreover, there were no differences between OSA and SRAH, supporting the hypothesis that autonomic changes in OSA are primarily related to a reduced nocturnal oxygen saturation, rather than a consequence of other factors such as nocturnal respiratory event
    corecore