16,739 research outputs found
A Cholinergic Synaptically Triggered Event Participates in the Generation of Persistent Activity Necessary for Eye Fixation
An exciting topic regarding integrative properties of the nervous system is how transient motor commands or brief sensory stimuli are able to evoke persistent neuronal changes, mainly as a sustained, tonic action potential firing. A persisting firing seems to be necessary for postural maintenance after a previous movement. We have studied in vitro and in vivo the generation of the persistent neuronal activity responsible for eye fixation after spontaneous eye movements. Rat sagittal brainstem slices were used for the intracellular recording of prepositus hypoglossi (PH) neurons and their synaptic activation from nearby paramedian pontine reticular formation (PPRF) neurons. Single electrical pulses applied to the PPRF showed a monosynaptic glutamatergic projection on PH neurons, acting on AMPA-kainate receptors. Train stimulation of the PPRF area evoked a sustained depolarization of PH neurons exceeding (by hundreds of milliseconds) stimulus duration. Both duration and amplitude of this sustained depolarization were linearly related to train frequency. The train-evoked sustained depolarization was the result of interaction between glutamatergic excitatory burst neurons and cholinergic mesopontine reticular fibers projecting onto PH neurons, because it was prevented by slice superfusion with cholinergic antagonists and mimicked by cholinergic agonists. As expected, microinjections of cholinergic antagonists in the PH nucleus of alert behaving cats evoked a gaze-holding deficit consisting of a re-centering drift of the eye after each saccade. These findings suggest that a slow, cholinergic, synaptically triggered event participates in the generation of persistent activity characteristic of PH neurons carrying eye position signals
Effect of Sunflower and Marine Oils on Ruminal Microbiota, In vitro Fermentation and Digesta Fatty Acid Profile
Funding This work has been funded by Consejería de Educación, Junta de Castilla y León (research project LE007A07). Acknowledgments We acknowledge support of the publication fee by the CSIC Open Access Publication Support Initiative through its Unit of Information Resources for Research (URICI). Support received from CICYT project AGL2005-04760-C02-02 is gratefully acknowledged.Peer reviewedPublisher PD
Non-linear response of single-molecule magnets: field-tuned quantum-to-classical crossovers
Quantum nanomagnets can show a field dependence of the relaxation time very
different from their classical counterparts, due to resonant tunneling via
excited states (near the anisotropy barrier top). The relaxation time then
shows minima at the resonant fields H_{n}=n D at which the levels at both sides
of the barrier become degenerate (D is the anisotropy constant). We showed that
in Mn12, near zero field, this yields a contribution to the nonlinear
susceptibility that makes it qualitatively different from the classical curves
[Phys. Rev. B 72, 224433 (2005)]. Here we extend the experimental study to
finite dc fields showing how the bias can trigger the system to display those
quantum nonlinear responses, near the resonant fields, while recovering an
classical-like behaviour for fields between them. The analysis of the
experiments is done with heuristic expressions derived from simple balance
equations and calculations with a Pauli-type quantum master equation.Comment: 4 pages, 3 figures. Submitted to Phys. Rev. B, brief report
- …