1,246 research outputs found

    Forecasting transport mode use with support vector machines based approach

    Get PDF
    The paper explores potential to forecast what transport mode one will use for his/her next trip. The support vector machines based approach learns from individual's behavior (validated GPS tracks) to support smart city transport planning services. The overall success rate, in forecasting the transport mode, is 82 %, with lower confusion for private car, bike and walking

    Detecting changes of transportation-mode by using classification data

    Get PDF

    Investigating the mobility habits of electric bike owners through GPS data

    Get PDF
    This paper investigates the mobility habits of electric bike owners as well as their preferred routes. Through a GPS tracking campaign conducted in the city of Ghent (Belgium) we analyze the mobility habits (travel distance, time spent, speed) during the week of some e-bike users. Moreover, we propose the results of our map matching, based on the Hausdorff criterion, and preliminary results on the route choice of our sample. We strongly believe that investigating the behavior of electric bikes’ owners can help us in better understanding how to incentivize the use of this mode of transport. First results show that the trips with a higher travel distance are performed during the working days. It could be easily correlated with the daily commuting trips (home-work). Moreover, the results of our map-matching highlight how 61% of the trips are performed using the shortest path

    Unveiling E-bike potential for commuting trips from GPS traces

    Get PDF
    Common goals of sustainable mobility approaches are to reduce the need for travel, to facilitate modal shifts, to decrease trip distances and to improve energy efficiency in the transportation systems. Among these issues, modal shift plays an important role for the adoption of vehicles with fewer or zero emissions. Nowadays, the electric bike (e-bike) is becoming a valid alternative to cars in urban areas. However, to promote modal shift, a better understanding of the mobility behaviour of e-bike users is required. In this paper, we investigate the mobility habits of e-bikers using GPS data collected in Belgium from 2014 to 2015. By analysing more than 10,000 trips, we provide insights about e-bike trip features such as: distance, duration and speed. In addition, we offer a deep look into which routes are preferred by bike owners in terms of their physical characteristics and how weather influences e-bike usage. Results show that trips with higher travel distances are performed during working days and are correlated with higher average speeds. Usage patterns extracted from our data set also indicate that e-bikes are preferred for commuting (home-work) and business (work related) trips rather than for recreational trips

    Measuring delays for bicycles at signalized intersections using smartphone GPS tracking data

    Get PDF
    The article describes an application of global positioning system (GPS) tracking data (floating bike data) for measuring delays for cyclists at signalized intersections. For selected intersections, we used trip data collected by smartphone tracking to calculate the average delay for cyclists by interpolation between GPS locations before and after the intersection. The outcomes were proven to be stable for different strategies in selecting the GPS locations used for calculation, although GPS locations too close to the intersection tended to lead to an underestimation of the delay. Therefore, the sample frequency of the GPS tracking data is an important parameter to ensure that suitable GPS locations are available before and after the intersection. The calculated delays are realistic values, compared to the theoretically expected values, which are often applied because of the lack of observed data. For some of the analyzed intersections, however, the calculated delays lay outside of the expected range, possibly because the statistics assumed a random arrival rate of cyclists. This condition may not be met when, for example, bicycles arrive in platoons because of an upstream intersection. This justifies that GPS-based delays can form a valuable addition to the theoretically expected values

    Forecasting travel behaviour from crowdsourced data with machine learning based model

    Get PDF
    Information and communication technologies have become integral part of our everyday lives. It seems as logical consequence that smart city concept is trying to explore the role of integrated information and communication approach in managing city’s assets and in providing better quality of life to its citizens. Provision of better quality of life relies on improved management of city’s systems (e.g., transport system) but also on provision of timely and relevant information to its citizens in order to support them in making more informed decisions. To ensure this, use of forecasting models is needed. In this paper, we develop support vector machine based model with aim to predict future mobility behavior from crowdsourced data. The crowdsourced data are collected based on dedicated smartphone app that tracks mobility behavior. Use of such forecasting model can facilitate management of smart city’s mobility system but also ensures timely provision of relevant pre-travel information to its citizens

    Error sources in the analysis of crowdsourced spatial tracking data

    Get PDF
    Governments are increasingly interested in the use of crowdsourced spatial tracking data to gain information on the travel behaviour of their citizens. To improve the reliability of reporting in such mobility studies, this paper systematically analyses the propagation of errors from low level operations to high level indicators, such as the modal split and travelled distances. We find that most existing metrics in literature are insufficient to fully quantify this evolution of data quality. The propagation channels are presented schematically and a new approach to quantify the spatial data quality at the end of each processing stage is proposed. This procedure, within the context of Smart Cities, ensures that the data analytics and resulting changes in policy are sufficiently substantiated by credible and reliable information

    Travelled distance estimation for GPS-based round trips car-sharing use case

    Get PDF
    Traditional travel survey methods have been widely used for collecting information about urban mobility although Global Position System (GPS) has become an automatic option for collecting more precise data of the households since mid-1990s. Many studies on mobility patterns have focused on the GPS advantages leaving aside its issues such as the quality of the data collected. However, when it comes to extract the frequency of the trips and travelled distance, this technology faces some gaps due to the related issues such as signal reception and time-to-first-fix location that turns out in missing observations and respectively unrecognised or over-segmented trips. In this study, we focus on two aspects of GPS data for a car-mode, (i) measurement of the gaps in the travelled distance and (ii) estimation of the travelled distance and the factors that influence the GPS gaps. To asses that, GPS tracks are compared to a ground truth source. Additionally, the trips are analysed based on the land use (e.g. urban and rural areas) and length (e.g. short, medium and long trips). Results from 170 participants and more than a year of GPS-tracking show that around 9 % of the travelled distance is not captured by GPS and it affects more short trips than long ones. Moreover, we validate the importance of the time spent on the user activity and the land use as factors that influence the gaps in GPS
    • …
    corecore