9 research outputs found

    Maier-Saupe-type theory of ferroelectric nanoparticles in nematic liquid crystals

    Full text link
    Several experiments have reported that ferroelectric nanoparticles have drastic effects on nematic liquid crystals--increasing the isotropic-nematic transition temperature by about 5 K, and greatly increasing the sensitivity to applied electric fields. In a recent paper [L. M. Lopatina and J. V. Selinger, Phys. Rev. Lett. 102, 197802 (2009)], we modeled these effects through a Landau theory, based on coupled orientational order parameters for the liquid crystal and the nanoparticles. This model has one important limitation: Like all Landau theories, it involves an expansion of the free energy in powers of the order parameters, and hence it overestimates the order parameters that occur in the low-temperature phase. For that reason, we now develop a new Maier-Saupe-type model, which explicitly shows the low-temperature saturation of the order parameters. This model reduces to the Landau theory in the limit of high temperature or weak coupling, but shows different behavior in the opposite limit. We compare these calculations with experimental results on ferroelectric nanoparticles in liquid crystals.Comment: 7 pages, including 2 postscript figures, uses REVTeX 4.

    Domain and stripe formation between hexagonal and square ordered fillings of colloidal particles on periodic pinning substrates

    Get PDF
    Using large scale numerical simulations, we examine the ordering of colloidal particles on square periodic two-dimensional muffin-tin substrates consisting of a flat surface with localized pinning sites. We show that when there are four particles per pinning site, the particles adopt a hexagonal ordering, while for five particles per pinning site, a square ordering appears. For fillings between four and five particles per pinning site, we identify a rich variety of distinct ordering regimes, including disordered grain boundaries, crystalline stripe structures, superlattice orderings, and disordered patchy arrangements. We characterize the different regimes using Voronoi analysis, energy dispersion, and ordering of the domains. We show that many of the boundary formation features we observe occur for a wide range of other fillings. Our results demonstrate that grain boundary tailoring can be achieved with muffin-tin periodic pinning substrates

    Polymer-disordered liquid crystals: Susceptibility to an electric field

    No full text

    Theory of Ferroelectric Nanoparticles in Nematic Liquid Crystals

    No full text
    corecore