465 research outputs found

    Quantum tunneling between paramagnetic and superconducting states of a nanometer-scale superconducting grain placed in a magnetic field

    Full text link
    We consider the process of quantum tunneling between the superconducting and paramagnetic states of a nanometer-scale superconducting grain placed in a magnetic field. The grain is supposed to be coupled via tunneling junction to a normal metallic contact that plays a role of the spin reservoir. Using the instanton method we find the probability of the quantum tunneling process and express it in terms of the applied magnetic field, order parameter of the superconducting grain and conductance of the tunneling junction between the grain and metallic contact

    Instanton approach to the Langevin motion of a particle in a random potential

    Full text link
    We develop an instanton approach to the non-equilibrium dynamics in one-dimensional random environments. The long time behavior is controlled by rare fluctuations of the disorder potential and, accordingly, by the tail of the distribution function for the time a particle needs to propagate along the system (the delay time). The proposed method allows us to find the tail of the delay time distribution function and delay time moments, providing thus an exact description of the long-time dynamics. We analyze arbitrary environments covering different types of glassy dynamics: dynamics in a short-range random field, creep, and Sinai's motion.Comment: 4 pages, 1 figur

    Thermal transport in granular metals

    Full text link
    We study the electron thermal transport in granular metals at large tunnel conductance between the grains, gT≫1g_T \gg 1 and not too low a temperature T>gTδT > g_T\delta, where δ\delta is the mean energy level spacing for a single grain. Taking into account the electron-electron interaction effects we calculate the thermal conductivity and show that the Wiedemann-Franz law is violated for granular metals. We find that interaction effects suppress the thermal conductivity less than the electrical conductivity.Comment: Replaced with published versio

    Thermodynamics of the superfluid dilute Bose gas with disorder

    Full text link
    We generalize the Beliaev-Popov diagrammatic technique for the problem of interacting dilute Bose gas with weak disorder. Averaging over disorder is implemented by the replica method. Low energy asymptotic form of the Green function confirms that the low energy excitations of the superfluid dirty Boson system are sound waves with velocity renormalized by the disorder and additional dissipation due to the impurity scattering. We find the thermodynamic potential and the superfluid density at any temperature below the superfluid transition temperature and derive the phase diagram in temperature vs. disorder plane.Comment: 4 page

    Replica symmetry breaking in long-range glass models without quenched disorder

    Full text link
    We discuss mean field theory of glasses without quenched disorder focusing on the justification of the replica approach to thermodynamics. We emphasize the assumptions implicit in this method and discuss how they can be verified. The formalism is applied to the long range Ising model with orthogonal coupling matrix. We find the one step replica-symmetry breaking solution and show that it is stable in the intermediate temperature range that includes the glass state but excludes very low temperatures. At very low temperatures this solution becomes unstable and this approach fails.Comment: 6 pages, 2 figure

    Order via Nonlinearity in Randomly Confined Bose Gases

    Full text link
    A Hartree-Fock mean-field theory of a weakly interacting Bose-gas in a quenched white noise disorder potential is presented. A direct continuous transition from the normal gas to a localized Bose-glass phase is found which has localized short-lived excitations with a gapless density of states and vanishing superfluid density. The critical temperature of this transition is as for an ideal gas undergoing Bose-Einstein condensation. Increasing the particle-number density a first-order transition from the localized state to a superfluid phase perturbed by disorder is found. At intermediate number densities both phases can coexist.Comment: Author Information under http://www.theo-phys.uni-essen.de/tp/ags/pelster_dir/. International Journal of Bifurcation and Chaos (in press

    Effects of fluctuations and Coulomb interaction on the transition temperature of granular superconductors

    Full text link
    We investigate the suppression of superconducting transition temperature in granular metallic systems due to (i) fluctuations of the order parameter (bosonic mechanism) and (ii) Coulomb repulsion (fermionic mechanism) assuming large tunneling conductance between the grains gT≫1g_{T}\gg 1. We find the correction to the superconducting transition temperature for 3dd granular samples and films. We demonstrate that if the critical temperature Tc>gTδT_c > g_T \delta, where δ\delta is the mean level spacing in a single grain the bosonic mechanism is the dominant mechanism of the superconductivity suppression, while for critical temperatures Tc<gTδT_c < g_T \delta the suppression of superconductivity is due to the fermionic mechanism.Comment: 12 pages, 9 figures, several sections clarifying the details of our calculations are adde

    Superconducting-coil--resistor circuit with electric field quadratic in the current

    Full text link
    It is shown for the first time that the observed [Phys. Lett. A 162 (1992) 105] potential difference Phi_t between the resistor and the screen surrounding the circuit is caused by polarization of the resistor because of the kinetic energy of the electrons of the superconducting coil. The proportionality of Phi_t to the square of the current and to the length of the superconducting wire is explained. It is pointed out that measuring Phi_t makes it possible to determine the Fermi quasimomentum of the electrons of a metal resistor.Comment: 2 pages, 1 figur

    Superconductivity, phase fluctuations and the c-axis conductivity of bilayer high temperature superconductors

    Full text link
    We present a theory of the interplane conductivity of bilayer high temperature superconductors, focusing on the effect of quantal and thermal fluctuations on the oscillator strengths of the superfluid stiffness and the bilayer plasmon. We find that the opening of the superconducting gap and establishment of superconducting phase coherence each lead to redistribution of spectral weight over wide energy scales. The factor-of-two relation between the superfluid stiffness and the change below TcT_c in the oscillator strength of the absorptive part of the conductivity previously derived for single-layer systems, is found to be substantially modified in bilayer systems.Comment: 11 pages, 14 figure

    Measurement of Inverse Pion Photoproduction at Energies Spanning the N(1440) Resonance

    Full text link
    Differential cross sections for the process pi^- p -> gamma n have been measured at Brookhaven National Laboratory's Alternating Gradient Synchrotron with the Crystal Ball multiphoton spectrometer. Measurements were made at 18 pion momenta from 238 to 748 MeV/c, corresponding to E_gamma for the inverse reaction from 285 to 769 MeV. The data have been used to evaluate the gamma n multipoles in the vicinity of the N(1440) resonance. We compare our data and multipoles to previous determinations. A new three-parameter SAID fit yields 36 +/- 7 (GeV)^-1/2 X 10^-3 for the A^n_1/2 amplitude of the P_11.Comment: 14 pages, 8 figures, submitted to PR
    • …
    corecore