13 research outputs found

    Allergenicity of latex rubber products used in South African dental schools

    Get PDF
    Background. Latex sensitisation is recognised as a health problem among health care workers (HCWs) using latex products. The aim of this study was to quantify specific latex allergens in latex devices used in South African academic dental schools. The current study also compared the total protein content and the levels of specific allergens in these products.Methods. Fourteen latex examination gloves (powdered and non-powdered) and five dental rubber dams, representing 6 brands, from five dental academic institutions were analysed for latex allergens and total protein. Total protein content was determined using the BioRad DC protein assay kit and natural rubber allergen levels using a capture enyme-linked immunosorbent assay (ELISA) specific for Hev b 1, Hev b 3, Hev b 5 and Hev b 6.02.Results. Hev b 6.02 was found in higher concentrations thanother natural rubber latex (NRL) allergens in the products analysed. Hev b 5 content ranged from 0 to 9.2 ìg/g and Hev b 6.02 from 0.09 to 61.5 ìg/g of sample. Hev b 1 levels were below the detection limit (DL) for 79% of the samples (15/19). Dental dams showed higher allergen levels (median 80.91 ìg/ g) than latex gloves (median 11.34 ìg/g). Powdered rubber samples also showed higher allergen levels (median 40.54 ìg/g) than non-powdered samples (median 5.31 ìg/g). Astatistically significant correlation was observed between totalprotein and total allergen (r=0.74,

    Not all shellfish "allergy" is allergy!

    Get PDF
    The popularity of shellfish has been increasing worldwide, with a consequent increase in adverse reactions that can be allergic or toxic. The approximate prevalence of shellfish allergy is estimated at 0.5-2.5% of the general population, depending on degree of consumption by age and geographic regions. The manifestations of shellfish allergy vary widely, but it tends to be more severe than most other food allergens

    Airborne seafood allergens as a cause of occupational allergy and asthma

    No full text
    Occupational allergy and asthma is a serious adverse health outcome affecting seafood-processing workers. Allergic reactions are directed to two major seafood groups: fish and shellfish, with the latter group comprising crustaceans and molluscs. Several allergenic proteins have been identified in these different groups, but few have been characterised on a molecular level. Parvalbumin appears to be the major fish allergen, while tropomyosin the major crustacean allergen. Other IgE-binding proteins have also been identified in molluscs and other seafood-associated agents (e.g. Anisakis sp), although their molecular nature has not been characterised. Aerosolised allergens can be identified and quantified using immunological and chemical approaches, detecting levels as low as 10 ng/m³. This contemporary review discusses interesting and recent findings in the area of occupational seafood allergy including high-risk occupations, environmental risk factors for airborne exposures, major and minor allergens implicated and innovative approaches in diagnosing and managing occupational allergy and asthma associated with seafood processing

    Detection of fish antigens aerosolized during fish processing using newly developed immunoassays

    No full text
    Background: Aerosolization of fish proteins during seafood processing has been identified as a potential route for allergic sensitization and occupational asthma among workers involved in high-risk activities. The aim of this study was to develop immunological assays for the quantification of aerosolized fish antigens in a fish-processing factory. \ud \ud Methods: Polyclonal antibodies to the main fish species processed in the factory (anchovy and pilchard) were generated in rabbits and compared by ELISA inhibition assay and immunoblotting. These antisera were utilized to develop ELISA assays for the detection of fish antigens. The ELISA inhibition assays were evaluated by analyzing environmental air samples collected from three areas in a fish-processing factory: pilchard canning, fish meal production and lobster processing. \ud \ud Results: By immunoblotting, the rabbit polyclonal antibodies demonstrated IgG antibody binding patterns comparable with IgE antibodies of fish-sensitized patients, particularly in regard to the major fish allergens parvalbumins. The sensitivity of the fish-specific ELISA assays developed was 0.5 μg/ml. The ELISA inhibition assays were able to differentiate between the two different fish species of interest but did not recognize a crustacean species. Notable differences in exposure levels to canned pilchard and anchovy antigens were demonstrated in the three different working areas of the factory, with assays having a detection limit as low as 105 ng/m3. \ud \ud Conclusion: These ELISA-based assays are sensitive and specific to quantify differential exposure levels to fish antigens produced during fish processing, making it possible to investigate exposure-disease response relationships among workers in this industry

    Fish allergy: in review

    No full text
    Globally, the rising consumption of fish and its derivatives, due to its nutritional value and divergence of international cuisines, has led to an increase in reports of adverse reactions to fish. Reactions to fish are not only mediated by the immune system causing allergies, but are often caused by various toxins and parasites including ciguatera and Anisakis. Allergic reactions to fish can be serious and life threatening and children usually do not outgrow this type of food allergy. The route of exposure is not only restricted to ingestion but include manual handling and inhalation of cooking vapors in the domestic and occupational environment. Prevalence rates of self-reported fish allergy range from 0.2 to 2.29% in the general population, but can reach up to 8% among fish processing workers. Fish allergy seems to vary with geographical eating habits, type of fish processing, and fish species exposure. The major fish allergen characterized is parvalbumin in addition to several less well-known allergens. This contemporary review discusses interesting and new findings in the area of fish allergy including demographics, novel allergens identified, immunological mechanisms of sensitization, and innovative approaches in diagnosing and managing this life-long disease

    IgE reactivity of blue swimmer crab (Portunus pelagicus) tropomyosin, Por p 1, and other allergens; cross-reactivity with black tiger prawn and effects of heating

    Get PDF
    Shellfish allergy is a major cause of food-induced anaphylaxis, but the allergens are not well characterized. This study examined the effects of heating on blue swimmer crab (Portunus pelagicus) allergens in comparison with those of black tiger prawn (Penaeus monodon) by testing reactivity with shellfish-allergic subjects' serum IgE. Cooked extracts of both species showed markedly increased IgE reactivity by ELISA and immunoblotting, and clinical relevance of IgE reactivity was confirmed by basophil activation tests. Inhibition IgE ELISA and immunoblotting demonstrated cross-reactivity between the crab and prawn extracts, predominantly due to tropomyosin, but crab-specific IgE-reactivity was also observed. The major blue swimmer crab allergen tropomyosin, Por p 1, was cloned and sequenced, showing strong homology with tropomyosin of other crustacean species but also sequence variation within known and predicted linear IgE epitopes. These findings will advance more reliable diagnosis and management of potentially severe food allergy due to crustaceans
    corecore