86 research outputs found

    2D and 3D ultrasound strain imaging. Methods and in vivo applications.

    Get PDF
    Contains fulltext : 87192.pdf (publisher's version ) (Open Access)3 december 2010Promotores : Thijssen, J.M., Groot, R. de Co-promotores : Korte, C.L. de, Kapusta, L.267 p

    Identifiability analysis of the standard pharmacokinetic models in DCE MR imaging of tumours

    No full text
    The usage of dynamic contrast-enhanced MRI (DCE-MRI) as a clinical tool is still widely assessed. Application of the standard pharmacokinetic models to obtain physiologically relevant parameter values using DCE-MRI in tumours is not trivial, when the temporal resolution is low. Mathematical analysis and analysis by simulation of the identifiability for the generalized and extended Kety models was executed. Parameter estimation was executed using synthetic data sets and maximum likelihood estimation (MLE). The influence of temporal resolution was examined. The generalized and extended Kety model showed a large bias in the parameter estimates (10-120%) for sampling times >4 s, although the estimated variance was relatively low

    Noninvasive carotid strain imaging using angular compounding at large beam steered angles: validation in vessel phantoms.

    No full text
    Item does not contain fulltextStroke and myocardial infarction are initiated by rupturing vulnerable atherosclerotic plaques. With noninvasive ultrasound elastography, these plaques might be detected in carotid arteries. However, since the ultrasound beam is generally not aligned with the radial direction in which the artery pulsates, radial and circumferential strains need to be derived from axial and lateral data. Conventional techniques to perform this conversion have the disadvantage that lateral strain is required. Since the lateral strain has relatively poor accuracy, the quality of the radial and circumferential strains is reduced. In this study, the radial and circumferential strain estimates are improved by combining axial strain data acquired at multiple insonification angles. Adaptive techniques to correct for grating lobe interference and other artifacts that occur when performing beam steering at large angles are introduced. Acquisitions at multiple angles are performed with a beam steered linear array. For each beam steered angle, there are two spatially restricted regions of the circular vessel cross section where the axial strain is closely aligned with the radial strain and two spatially restricted regions (different from the radial strain regions) where the axial strain is closely aligned with the circumferential strain. These segments with high quality strain estimates are compounded to form radial or circumferential strain images. Compound radial and circumferential strain images were constructed for a homogeneous vessel phantom with a concentric lumen subjected to different intraluminal pressures. Comparison of the elastographic signal-to-noise ratio (SNR(e)) and contrast-to-noise ratio (CNR(e)) revealed that compounding increases the image quality considerably compared to images from 0 degrees information only. SNR(e) and CNR(e) increase up to 2.7 and 6.6 dB, respectively. The highest image quality was achieved by projecting axial data, completed with a small segment determined by either principal component analysis or by application of a rotation matrix

    A dedicated guided-search displacement algorithm for cardiovascular strain imaging

    No full text
    Traditionally, an exhaustive search is performed for 2D strain imaging, often using a priori knowledge or an iterative, multi-level (ML) approach to improve strain quality. In this study, a dedicated guided-search algorithm (CGS), using a seeding procedure that was specifically designed for cardiovascular applications, is introduced and applied to simulation data, and data of aortas, both in vitro and in vitro. The method was compared to two existing methods, a multi-level algorithm and a conventional guided-search approach (GS). Results reveal an improvement of SNRe for the simulation data improvement. The (C)GS method showed good strain results, even when no filtering was applied to the displacements. The in vitro data revealed similar results, however, the in vivo data revealed significant improvement when using the CGS approach over the ML algorithm, whereas the GS method was not able to track the vessel wall over time. A next step will be to apply this algorithm to cardiac data and incorporate stretching

    An angular compounding technique using displacement projection for noninvasive ultrasound strain imaging of vessel cross-sections.

    No full text
    Contains fulltext : 88095.pdf (publisher's version ) (Closed access)Strain is considered to be a useful indicator of atherosclerotic plaque vulnerability. This study introduces an alternative for a recently introduced strain imaging method that combined beam steered ultrasound acquisitions to construct radial strain images of transverse cross-sections of superficial arteries. In that study, axial strains were projected in the radial direction. Using the alternative method introduced in this study, axial displacements are projected radially, followed by a least squares estimation of radial strains. This enables the use of a larger projection angle. Consequently, fewer acquisitions at smaller beam steering angles are required to construct radial strain images. Simulated and experimentally obtained radio-frequency data of radially expanding vessel phantoms were used to compare the two methods. Using only three beam steering angles (-30 degrees , 0 degrees and 30 degrees ), the new method outperformed the older method that used seven different angles and up to 45 degrees of beam steering: the root mean squared error was reduced by 38% and the elastographic signal- and contrast-to-noise ratios increased by 1.8 dB and 4.9 dB, respectively. The new method was also superior for homogeneous and heterogeneous phantoms with eccentric lumens. To conclude, an improved noninvasive method was developed for radial strain imaging in transverse cross-sections of superficial arteries.01 november 201

    Correlation-based discrimination between cardiac tissue and blood for segmentation of 3D echocardiographic images

    No full text
    Automated segmentation of 3D echocardiographic images in patients with congenital heart disease is challenging, because the boundary between blood and cardiac tissue is poorly defined in some regions. Cardiologists mentally incorporate movement of the heart, using temporal coherence of structures to resolve ambiguities. Therefore, we investigated the merit of temporal cross-correlation for automated segmentation over the entire cardiac cycle. Optimal settings for maximum cross-correlation (MCC) calculation, based on a 3D cross-correlation based displacement estimation algorithm, were determined to obtain the best contrast between blood and myocardial tissue over the entire cardiac cycle. Resulting envelope-based as well as RF-based MCC values were used as additional external force in a deformable model approach, to segment the left-ventricular cavity in entire systolic phase. MCC values were tested against, and combined with, adaptive filtered, demodulated RF-data. Segmentation results were compared with manually segmented volumes using a 3D Dice Similarity Index (3DSI). Results in 3D pediatric echocardiographic images sequences (n = 4) demonstrate that incorporation of temporal information improves segmentation. The use of MCC values, either alone or in combination with adaptive filtered, demodulated RF-data, resulted in an increase of the 3DSI in 75% of the cases (average 3DSI increase: 0.71 to 0.82). Results might be further improved by optimizing MCC-contrast locally, in regions with low blood-tissue contrast. Reducing underestimation of the endocardial volume due to MCC processing scheme (choice of window size) and consequential border-misalignment, could also lead to more accurate segmentations. Furthermore, increasing the frame rate will also increase MCC-contrast and thus improve segmentation
    • …
    corecore