308 research outputs found

    A New Method of Measuring 81Kr and 85Kr Abundances in Environmental Samples

    Full text link
    We demonstrate a new method for determining the 81Kr/Kr ratio in environmental samples based upon two measurements: the 85Kr/81Kr ratio measured by Atom Trap Trace Analysis (ATTA) and the 85Kr/Kr ratio measured by Low-Level Counting (LLC). This method can be used to determine the mean residence time of groundwater in the range of 10^5 - 10^6 a. It requires a sample of 100 micro-l STP of Kr extracted from approximately two tons of water. With modern atmospheric Kr samples, we demonstrate that the ratios measured by ATTA and LLC are directly proportional to each other within the measurement error of +/- 10%; we calibrate the 81Kr/Kr ratio of modern air measured using this method; and we show that the 81Kr/Kr ratios of samples extracted from air before and after the development of the nuclear industry are identical within the measurement error

    Discovery of underground argon with low level of radioactive 39Ar and possible applications to WIMP dark matter detectors

    Full text link
    We report on the first measurement of 39Ar in argon from underground natural gas reservoirs. The gas stored in the US National Helium Reserve was found to contain a low level of 39Ar. The ratio of 39Ar to stable argon was found to be <=4x10-17 (84% C.L.), less than 5% the value in atmospheric argon (39Ar/Ar=8x10-16). The total quantity of argon currently stored in the National Helium Reserve is estimated at 1000 tons. 39Ar represents one of the most important backgrounds in argon detectors for WIMP dark matter searches. The findings reported demonstrate the possibility of constructing large multi-ton argon detectors with low radioactivity suitable for WIMP dark matter searches.Comment: 6 pages, 2 figures, 2 table

    The Teleost Retina as a Model for Developmental and Regeneration Biology

    Full text link
    Retinal development in teleosts can broadly be divided into three epochs. The first is the specification of cellular domains in the larval forebrain that give rise to the retinal primordia and undergo early morphogenetic movements. The second is the neurogenic events within the retina proper—proliferation, cell fate determination, and pattern formation—that establish neuronal identities and form retinal laminae and cellular mosaics. The third, which is unique to teleosts and occurs in the functioning eye, is stretching of the retina and persistent neurogenesis that allows the growth of the retina to keep pace with the growth of the eye and other tissues. The first two events are rapid, complete by about 3 days postfertilization in the zebrafish embryo. The third is life-long and accounts for the bulk of retinal growth and the vast majority of adult retinal neurons. In addition, but clearly related to the retina's developmental history, lesions that kill retinal neurons elicit robust neuronal regeneration that originates from cells intrinsic to the retina. This paper reviews recent studies of retinal development in teleosts, focusing on those that shed light on the genetic and molecular regulation of retinal specification and morphogenesis in the embryo, retinal neurogenesis in larvae and adults, and injury-induced neuronal regeneration.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/63365/1/zeb.2004.1.257.pd

    Influenza Virus in Human Exhaled Breath: An Observational Study

    Get PDF
    Background: Recent studies suggest that humans exhale fine particles during tidal breathing but little is known of their composition, particularly during infection. Methodology/Principal Findings: We conducted a study of influenza infected patients to characterize influenza virus and particle concentrations in their exhaled breath. Patients presenting with influenza-like-illness, confirmed influenza A or B virus by rapid test, and onset within 3 days were recruited at three clinics in Hong Kong, China. We collected exhaled breath from each subject onto Teflon filters and measured exhaled particle concentrations using an optical particle counter. Filters were analyzed for influenza A and B viruses by quantitative polymerase chain reaction (qPCR). Twelve out of thirteen rapid test positive patients provided exhaled breath filter samples (7 subjects infected with influenza B virus and 5 subjects infected with influenza A virus). We detected influenza virus RNA in the exhaled breath of 4 (33%) subjects-three (60%) of the five patients infected with influenza A virus and one (14%) of the seven infected with influenza B virus. Exhaled influenza virus RNA generation rates ranged from <3.2 to 20 influenza virus RNA particles per minute. Over 87% of particles exhaled were under 1 μm in diameter. Conclusions: These findings regarding influenza virus RNA suggest that influenza virus may be contained in fine particles generated during tidal breathing, and add to the body of literature suggesting that fine particle aerosols may play a role in influenza transmission. © 2008 Fabian et al.published_or_final_versio

    Cell-Autonomous Requirement for Rx Function in the Mammalian Retina and Posterior Pituitary

    Get PDF
    Rx is a paired-like homeobox gene that is required for vertebrate eye formation. Mice lacking Rx function do not develop eyes or the posterior pituitary. To determine whether Rx is required cell autonomously in these tissues, we generated embryonic chimeras consisting of wild type and Rx−/− cells. We found that in the eye, Rx-deficient cells cannot participate in the formation of the neuroretina, retina pigment epithelium and the distal part of the optic stalk. In addition, in the ventral forebrain, Rx function is required cell autonomously for the formation of the posterior pituitary. Interestingly, Rx−/− and wild type cells segregate before the morphogenesis of these two tissues begins. Our observations suggest that Rx function is not only required for the morphogenesis of the retina and posterior pituitary, but also prior to morphogenesis, for the sorting out of cells to form distinct fields of retinal/pituitary cells

    B1 SOX Coordinate Cell Specification with Patterning and Morphogenesis in the Early Zebrafish Embryo

    Get PDF
    The B1 SOX transcription factors SOX1/2/3/19 have been implicated in various processes of early embryogenesis. However, their regulatory functions in stages from the blastula to early neurula remain largely unknown, primarily because loss-of-function studies have not been informative to date. In our present study, we systematically knocked down the B1 sox genes in zebrafish. Only the quadruple knockdown of the four B1 sox genes sox2/3/19a/19b resulted in very severe developmental abnormalities, confirming that the B1 sox genes are functionally redundant. We characterized the sox2/3/19a/19b quadruple knockdown embryos in detail by examining the changes in gene expression through in situ hybridization, RT–PCR, and microarray analyses. Importantly, these phenotypic analyses revealed that the B1 SOX proteins regulate the following distinct processes: (1) early dorsoventral patterning by controlling bmp2b/7; (2) gastrulation movements via the regulation of pcdh18a/18b and wnt11, a non-canonical Wnt ligand gene; (3) neural differentiation by regulating the Hes-class bHLH gene her3 and the proneural-class bHLH genes neurog1 (positively) and ascl1a (negatively), and regional transcription factor genes, e.g., hesx1, zic1, and rx3; and (4) neural patterning by regulating signaling pathway genes, cyp26a1 in RA signaling, oep in Nodal signaling, shh, and mdkb. Chromatin immunoprecipitation analysis of the her3, hesx1, neurog1, pcdh18a, and cyp26a1 genes further suggests a direct regulation of these genes by B1 SOX. We also found an interesting overlap between the early phenotypes of the B1 sox quadruple knockdown embryos and the maternal-zygotic spg embryos that are devoid of pou5f1 activity. These findings indicate that the B1 SOX proteins control a wide range of developmental regulators in the early embryo through partnering in part with Pou5f1 and possibly with other factors, and suggest that the B1 sox functions are central to coordinating cell fate specification with patterning and morphogenetic processes occurring in the early embryo

    A data-driven disease progression model of fluid biomarkers in genetic frontotemporal dementia

    Get PDF
    Supplementary material: Supplementary material is available at Brain online: https://oup.silverchair-cdn.com/oup/backfile/Content_public/Journal/brain/145/5/10.1093_brain_awab382/1/awab382_supplementary_data.zip?Expires=1665139578&Signature=C7VStQxldRqnpcchAWh4igaKwveciF~gaQCbInqMnI1YkIFV0euPXlI-0ZlRZ26hbRum6myjm88d3KzOM-wqVG~H7JO9TTUXoyi-n3hRRd1a4Vw0Hay9ykagca92gMqWij5ax4WzsEGlv~dKGSKKivH02pflzQyDAwF6xjjObYRYe29grdOZQ5h8orT6XNAdK5YFqpiX7L6mpVaNs7AOgNDdxtwshaa4kq1xxCgojTgAaIR3WFTFDpHkJ6wnhncxuteykTzq5~w1RCoDIfKQSA9C42i~iWryOeOvjv-P6j-R0tSkDGzFKcI3kUo3lUT9GiPG-vDwAO5EsLkUikJLOw__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA.GENFI consortium members Full details are available in the Supplementary material. Sónia Afonso, Maria Rosario Almeida, Sarah Anderl-Straub, Christin Andersson, Anna Antonell, Silvana Archetti, Andrea Arighi, Mircea Balasa, Myriam Barandiaran, Nuria Bargalló, Robart Bartha, Benjamin Bender, Alberto Benussi, Luisa Benussi, Valentina Bessi, Giuliano Binetti, Sandra Black, Martina Bocchetta, Sergi Borrego-Ecija, Jose Bras, Rose Bruffaerts, Marta Cañada, Valentina Cantoni, Paola Caroppo, David Cash, Miguel Castelo-Branco, Rhian Convery, Thomas Cope, Giuseppe Di Fede, Alina Díez, Diana Duro, Chiara Fenoglio, Camilla Ferrari, Catarina B. Ferreira, Nick Fox, Morris Freedman, Giorgio Fumagalli, Alazne Gabilondo, Roberto Gasparotti, Serge Gauthier, Stefano Gazzina, Giorgio Giaccone, Ana Gorostidi, Caroline Greaves, Rita Guerreiro, Tobias Hoegen, Begoña Indakoetxea, Vesna Jelic, Hans-Otto Karnath, Ron Keren, Tobias Langheinrich, Maria João Leitão, Albert Lladó, Gemma Lombardi, Sandra Loosli, Carolina Maruta, Simon Mead, Gabriel Miltenberger, Rick van Minkelen, Sara Mitchell, Katrina Moore, Benedetta Nacmias, Jennifer Nicholas, Linn Öijerstedt, Jaume Olives, Sebastien Ourselin, Alessandro Padovani, Georgia Peakman, Michela Pievani, Yolande Pijnenburg, Cristina Polito, Enrico Premi, Sara Prioni, Catharina Prix, Rosa Rademakers, Veronica Redaelli, Tim Rittman, Ekaterina Rogaeva, Pedro Rosa-Neto, Giacomina Rossi, Martin Rosser, Beatriz Santiago, Elio Scarpini, Sonja Schönecker, Elisa Semler, Rachelle Shafei, Christen Shoesmith, Miguel Tábuas-Pereira, Mikel Tainta, Ricardo Taipa, David Tang-Wai, David L Thomas, Paul Thompson, Hakan Thonberg, Carolyn Timberlake, Pietro Tiraboschi, Emily Todd, Philip Van Damme, Mathieu Vandenbulcke, Michele Veldsman, Ana Verdelho, Jorge Villanua, Jason Warren, Ione Woollacott, Elisabeth Wlasich, Miren Zulaica.Copyright © The Author(s) 2021. Several CSF and blood biomarkers for genetic frontotemporal dementia have been proposed, including those reflecting neuroaxonal loss (neurofilament light chain and phosphorylated neurofilament heavy chain), synapse dysfunction [neuronal pentraxin 2 (NPTX2)], astrogliosis (glial fibrillary acidic protein) and complement activation (C1q, C3b). Determining the sequence in which biomarkers become abnormal over the course of disease could facilitate disease staging and help identify mutation carriers with prodromal or early-stage frontotemporal dementia, which is especially important as pharmaceutical trials emerge. We aimed to model the sequence of biomarker abnormalities in presymptomatic and symptomatic genetic frontotemporal dementia using cross-sectional data from the Genetic Frontotemporal dementia Initiative (GENFI), a longitudinal cohort study. Two-hundred and seventy-five presymptomatic and 127 symptomatic carriers of mutations in GRN, C9orf72 or MAPT, as well as 247 non-carriers, were selected from the GENFI cohort based on availability of one or more of the aforementioned biomarkers. Nine presymptomatic carriers developed symptoms within 18 months of sample collection ('converters'). Sequences of biomarker abnormalities were modelled for the entire group using discriminative event-based modelling (DEBM) and for each genetic subgroup using co-initialized DEBM. These models estimate probabilistic biomarker abnormalities in a data-driven way and do not rely on previous diagnostic information or biomarker cut-off points. Using cross-validation, subjects were subsequently assigned a disease stage based on their position along the disease progression timeline. CSF NPTX2 was the first biomarker to become abnormal, followed by blood and CSF neurofilament light chain, blood phosphorylated neurofilament heavy chain, blood glial fibrillary acidic protein and finally CSF C3b and C1q. Biomarker orderings did not differ significantly between genetic subgroups, but more uncertainty was noted in the C9orf72 and MAPT groups than for GRN. Estimated disease stages could distinguish symptomatic from presymptomatic carriers and non-carriers with areas under the curve of 0.84 (95% confidence interval 0.80-0.89) and 0.90 (0.86-0.94) respectively. The areas under the curve to distinguish converters from non-converting presymptomatic carriers was 0.85 (0.75-0.95). Our data-driven model of genetic frontotemporal dementia revealed that NPTX2 and neurofilament light chain are the earliest to change among the selected biomarkers. Further research should investigate their utility as candidate selection tools for pharmaceutical trials. The model's ability to accurately estimate individual disease stages could improve patient stratification and track the efficacy of therapeutic interventions.Deltaplan Dementie (The Netherlands Organisation for Health Research and Development and Alzheimer Nederland; grant numbers 733050813,733050103 and 733050513), the Bluefield Project to Cure Frontotemporal Dementia, the Dioraphte founda tion (grant number 1402 1300), the European Joint Programme— Neurodegenerative Disease Research and the Netherlands Organisation for Health Research and Development (PreFrontALS: 733051042, RiMod-FTD: 733051024); V.V. and S.K. have received funding from the European Union’s Horizon 2020 research and in novation programme under grant agreement no. 666992 (EuroPOND). E.B. was supported by the Hartstichting (PPP Allowance, 2018B011); in Belgium by the Mady Browaeys Fonds voor Onderzoek naar Frontotemporale Degeneratie; in the UK by the MRC UK GENFI grant (MR/M023664/1); J.D.R. is supported by an MRC Clinician Scientist Fellowship (MR/M008525/1) and has received funding from the NIHR Rare Disease Translational Research Collaboration (BRC149/NS/MH); I.J.S. is supported by the Alzheimer’s Association; J.B.R. is supported by the Wellcome Trust (103838); in Spain by the Fundacio´ Marato´ de TV3 (20143810 to R.S.V.); in Germany by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy within the framework of the Munich Cluster for Systems Neurology (EXC 2145 SyNergy—ID 390857198) and by grant 779357 ‘Solve-RD’ from the Horizon 2020 Research and Innovation Programme (to MS); in Sweden by grants from the Swedish FTD Initiative funded by the Scho¨rling Foundation, grants from JPND PreFrontALS Swedish Research Council (VR) 529–2014-7504, Swedish Research Council (VR) 2015–02926, Swedish Research Council (VR) 2018–02754, Swedish Brain Foundation, Swedish Alzheimer Foundation, Stockholm County Council ALF, Swedish Demensfonden, Stohnes foundation, Gamla Tja¨narinnor, Karolinska Institutet Doctoral Funding and StratNeuro. H.Z. is a Wallenberg Scholar

    Plasma glial fibrillary acidic protein is raised in progranulin-associated frontotemporal dementia

    Get PDF
    Background There are few validated fluid biomarkers in frontotemporal dementia (FTD). Glial fibrillary acidic protein (GFAP) is a measure of astrogliosis, a known pathological process of FTD, but has yet to be explored as potential biomarker. Methods Plasma GFAP and neurofilament light chain (NfL) concentration were measured in 469 individuals enrolled in the Genetic FTD Initiative: 114 C9orf72 expansion carriers (74 presymptomatic, 40 symptomatic), 119 GRN mutation carriers (88 presymptomatic, 31 symptomatic), 53 MAPT mutation carriers (34 presymptomatic, 19 symptomatic) and 183 non-carrier controls. Biomarker measures were compared between groups using linear regression models adjusted for age and sex with family membership included as random effect. Participants underwent standardised clinical assessments including the Mini-Mental State Examination (MMSE), Frontotemporal Lobar Degeneration-C linical Dementia Rating scale and MRI. Spearman's correlation coefficient was used to investigate the relationship of plasma GFAP to clinical and imaging measures. Results Plasma GFAP concentration was significantly increased in symptomatic GRN mutation carriers (adjusted mean difference from controls 192.3 pg/mL, 95% CI 126.5 to 445.6), but not in those with C9orf72 expansions (9.0, -61.3 to 54.6), MAPT mutations (12.7, -33.3 to 90.4) or the presymptomatic groups. GFAP concentration was significantly positively correlated with age in both controls and the majority of the disease groups, as well as with NfL concentration. In the presymptomatic period, higher GFAP concentrations were correlated with a lower cognitive score (MMSE) and lower brain volume, while in the symptomatic period, higher concentrations were associated with faster rates of atrophy in the temporal lobe. Conclusions Raised GFAP concentrations appear to be unique to GRN-related FTD, with levels potentially increasing just prior to symptom onset, suggesting that GFAP may be an important marker of proximity to onset, and helpful for forthcoming therapeutic prevention trials

    A modified Camel and Cactus Test detects presymptomatic semantic impairment in genetic frontotemporal dementia within the GENFI cohort

    Get PDF
    Impaired semantic knowledge is a characteristic feature of some forms of frontotemporal dementia (FTD), particularly the sporadic disorder semantic dementia. Less is known about semantic cognition in the genetic forms of FTD caused by mutations in the genes MAPT, C9orf72, and GRN. We developed a modified version of the Camel and Cactus Test (mCCT) to investigate the presence of semantic difficulties in a large genetic FTD cohort from the Genetic FTD Initiative (GENFI) study. Six-hundred-forty-four participants were tested with the mCCT including 67 MAPT mutation carriers (15 symptomatic, and 52 in the presymptomatic period), 165 GRN mutation carriers (33 symptomatic, 132 presymptomatic), and 164 C9orf72 mutation carriers (56 symptomatic, 108 presymptomatic) and 248 mutation-negative members of FTD families who acted as a control group. The presymptomatic mutation carriers were further split into those early and late in the presymptomatic period (more than vs. within 10 years of expected symptom onset). Groups were compared using a linear regression model, adjusting for age and education, with bootstrapping. Performance on the mCCT had a weak negative correlation with age (rho = −0.20) and a weak positive correlation with education (rho = 0.13), with an overall abnormal score (below the 5th percentile of the control population) being below 27 out of a total of 32. All three of the symptomatic mutation groups scored significantly lower than controls: MAPT mean 22.3 (standard deviation 8.0), GRN 24.4 (7.2), C9orf72 23.6 (6.5) and controls 30.2 (1.6). However, in the presymptomatic groups, only the late MAPT and late C9orf72 mutation groups scored lower than controls (28.8 (2.2) and 28.9 (2.5) respectively). Performance on the mCCT correlated strongly with temporal lobe volume in the symptomatic MAPT mutation group (rho > 0.80). In the C9orf72 group, mCCT score correlated with both bilateral temporal lobe volume (rho > 0.31) and bilateral frontal lobe volume (rho > 0.29), whilst in the GRN group mCCT score correlated only with left frontal lobe volume (rho = 0.48). This study provides evidence for presymptomatic impaired semantic knowledge in genetic FTD. The different neuroanatomical associations of the mCCT score may represent distinct cognitive processes causing deficits in different groups: loss of core semantic knowledge associated with temporal lobe atrophy (particularly in the MAPT group), and impaired executive control of semantic information associated with frontal lobe atrophy. Further studies will be helpful to address the longitudinal change in mCCT performance and the exact time at which presymptomatic impairment occurs
    corecore