2,575 research outputs found

    Weighted Bergman kernels and virtual Bergman kernels

    Full text link
    We introduce the notion of "virtual Bergman kernel" and apply it to the computation of the Bergman kernel of "domains inflated by Hermitian balls", in particular when the base domain is a bounded symmetric domain.Comment: 12 pages. One-hour lecture for graduate students, SCV 2004, August 2004, Beijing, P.R. China. V2: typo correcte

    Reconstructing the geometric structure of a Riemannian symmetric space from its Satake diagram

    Full text link
    The local geometry of a Riemannian symmetric space is described completely by the Riemannian metric and the Riemannian curvature tensor of the space. In the present article I describe how to compute these tensors for any Riemannian symmetric space from the Satake diagram, in a way that is suited for the use with computer algebra systems. As an example application, the totally geodesic submanifolds of the Riemannian symmetric space SU(3)/SO(3) are classified. The submission also contains an example implementation of the algorithms and formulas of the paper as a package for Maple 10, the technical documentation for this implementation, and a worksheet carrying out the computations for the space SU(3)/SO(3) used in the proof of Proposition 6.1 of the paper.Comment: 23 pages, also contains two Maple worksheets and technical documentatio

    Note on Moufang-Noether currents

    Full text link
    The derivative Noether currents generated by continuous Moufang tranformations are constructed and their equal-time commutators are found. The corresponding charge algebra turns out to be a birepresentation of the tangent Mal'ltsev algebra of an analytic Moufang loop.Comment: LaTeX2e, 6 pages, no figures, presented on "The XVth International Colloquium on Integrable Systems and Quantum Symmetries, Prague, 15-17 June, 2006

    Is there a Jordan geometry underlying quantum physics?

    Get PDF
    There have been several propositions for a geometric and essentially non-linear formulation of quantum mechanics. From a purely mathematical point of view, the point of view of Jordan algebra theory might give new strength to such approaches: there is a ``Jordan geometry'' belonging to the Jordan part of the algebra of observables, in the same way as Lie groups belong to the Lie part. Both the Lie geometry and the Jordan geometry are well-adapted to describe certain features of quantum theory. We concentrate here on the mathematical description of the Jordan geometry and raise some questions concerning possible relations with foundational issues of quantum theory.Comment: 30 page

    Compression of sub-relativistic space-charge-dominated electron bunches for single-shot femtosecond electron diffraction

    Get PDF
    We demonstrate compression of 95 keV, space-charge-dominated electron bunches to sub-100 fs durations. These bunches have sufficient charge (200 fC) and are of sufficient quality to capture a diffraction pattern with a single shot, which we demonstrate by a diffraction experiment on a polycrystalline gold foil. Compression is realized by means of velocity bunching as a result of a velocity chirp, induced by the oscillatory longitudinal electric field of a 3 GHz radio-frequency cavity. The arrival time jitter is measured to be 80 fs

    Division, adjoints, and dualities of bilinear maps

    Full text link
    The distributive property can be studied through bilinear maps and various morphisms between these maps. The adjoint-morphisms between bilinear maps establish a complete abelian category with projectives and admits a duality. Thus the adjoint category is not a module category but nevertheless it is suitably familiar. The universal properties have geometric perspectives. For example, products are orthogonal sums. The bilinear division maps are the simple bimaps with respect to nondegenerate adjoint-morphisms. That formalizes the understanding that the atoms of linear geometries are algebraic objects with no zero-divisors. Adjoint-isomorphism coincides with principal isotopism; hence, nonassociative division rings can be studied within this framework. This also corrects an error in an earlier pre-print; see Remark 2.11

    Connecting geodesics and security of configurations in compact locally symmetric spaces

    Full text link
    A pair of points in a riemannian manifold makes a secure configuration if the totality of geodesics connecting them can be blocked by a finite set. The manifold is secure if every configuration is secure. We investigate the security of compact, locally symmetric spaces.Comment: 27 pages, 2 figure

    Testing one-body density functionals on a solvable model

    Full text link
    There are several physically motivated density matrix functionals in the literature, built from the knowledge of the natural orbitals and the occupation numbers of the one-body reduced density matrix. With the help of the equivalent phase-space formalism, we thoroughly test some of the most popular of those functionals on a completely solvable model.Comment: Latex, 16 pages, 4 figure
    corecore