206 research outputs found

    Role of persistent CMV infection in configuring T cell immunity in the elderly

    Get PDF
    Ageing is associated with declines in many physiological parameters, including multiple immune system functions. The rate of acceleration of the frequency of death due to cardiovascular disease or cancer seems to increase with age from middle age up to around 80 years, plateauing thereafter. Mortality due to infectious disease, however, does not plateau, but continues to accelerate indefinitely. The elderly commonly possess oligoclonal expansions of T cells, especially of CD8 cells, which, surprisingly, are often associated with cytomegalovirus (CMV) seropositivity. This in turn is associated with many of the same phenotypic and functional alterations to T cell immunity that have been suggested as biomarkers of immune system aging. Thus, the manner in which CMV and the host immune system interact is critical in determining the "age" of specific immunity. We may therefore consider immunosenescence in some respects as an infectious state. This implies that interventions aimed at the pathogen may improve the organ system affected. Hence, CMV-directed anti-virals or vaccination may have beneficial effects on immunity in later life

    Pre-surgical radiologic identification of peri-prosthetic osteolytic lesions around TKRs: a pre-clinical investigation of diagnostic accuracy

    Get PDF
    Background: Emerging longitudinal data appear to demonstrate an alarming trend towards an increasing prevalence of osteolysis-induced mechanical failure, following total knee replacement (TKR). Even with high-quality multi-plane X-rays, accurate pre-surgical evaluation of osteolytic lesions is often difficult. This is likely to have an impact on surgical management and provides reasonable indication for the development of a model allowing more reliable lesion assessment. The aim of this study, using a simulated cadaver model, was to explore the accuracy of rapid spiral computed tomography (CT) examination in the non-invasive evaluation of peri-prosthetic osteolytic lesions, secondary to TKR, and to compare this to conventional X-ray standards. Methods: A series of nine volume-occupying defects, simulating osteolytic lesions, were introduced into three human cadaveric knees, adjacent to the TKR implant components. With implants in situ, each knee was imaged using a two-stage conventional plain X-ray series and rapid-acquisition spiral CT. A beam-hardening artefact removal algorithm was employed to improve CT image quality. After random image sorting, 12 radiologists were independently shown the series of plain X-ray images and asked to note the presence, anatomic location and 'size' of osteolytic lesions observed. The same process was repeated separately for review of the CT images. The corresponding X-ray and CT responses were directly compared to elicit any difference in the ability to demonstrate the presence and size of osteolytic lesions. Results: Access to CT images significantly improved the accuracy of recognition of peri-prosthetic osteolytic lesions when compared to AP and lateral projections alone (P = 0.008) and with the addition of bi-planar oblique X-rays (P = 0.03). No advantage was obtained in accuracy of identification of such lesions through the introduction of the oblique images when compared with the AP and lateral projections alone (P = 0.13) Conclusion: The findings of this study suggest that peri-prosthetic osteolytic lesions can be reliably described non-invasively using a simple, rapid-acquisition CT-based imaging approach. The low sensitivity of conventional X-ray, even with provision of supplementary bi-planar 45° oblique views, suggests a limited role for use in situ for TKR implant screening where peri-prosthetic osteolytic lesions are clinically suspected. In contrast, the accuracy of CT evaluation, linked to its procedural ease and widespread availability, may provide a more accurate way of evaluating osteolysis around TKRs, at routine orthopaedic follow up. These findings have direct clinical relevance, as accurate early recognition and classification of such lesions influences the timing and aggressiveness of surgical and non-operative management strategies, and also the nature and appropriateness of planned implant revision or joint-salvaging osteotomy procedures.Timothy P. Kurmis, Andrew P. Kurmis, David G. Campbell and John P. Slavotine

    The Future of Biologic Agents in the Treatment of Sjögren’s Syndrome

    Get PDF
    The gain in knowledge regarding the cellular mechanisms of T and B lymphocyte activity in the pathogenesis of Sjögren’s syndrome (SS) and the current availability of various biological agents (anti-TNF-α, IFN- α, anti-CD20, and anti-CD22) have resulted in new strategies for therapeutic intervention. In SS, various phase I and II studies have been performed to evaluate these new strategies. Currently, B cell-directed therapies seem to be more promising than T cell-related therapies. However, large, randomized, placebo-controlled clinical trials are needed to confirm the promising results of these early studies. When performing these trials, special attention has to be paid to prevent the occasional occurrence of the severe side effects

    Measuring femoral lesions despite CT metal artefacts: a cadaveric study

    Get PDF
    Objective Computed tomography is the modality of choice for measuring osteolysis but suffers from metal-induced artefacts obscuring periprosthetic tissues. Previous papers on metal artefact reduction (MAR) show qualitative improvements, but their algorithms have not found acceptance for clinical applications. We investigated to what extent metal artefacts interfere with the segmentation of lesions adjacent to a metal femoral implant and whether metal artefact reduction improves the manual segmentation of such lesions. Materials and methods We manually created 27 periprosthetic lesions in 10 human cadaver femora. We filled the lesions with a fibrotic interface tissue substitute. Each femur was fitted with a polished tapered cobalt-chrome prosthesis and imaged twice—once with the metal, and once with a substitute resin prosthesis inserted. Metalaffected CTs were processed using standard back-projection as well as projection interpolation (PI) MAR. Two experienced users segmented all lesions and compared segmentation accuracy. Results We achieved accurate delineation of periprosthetic lesions in the metal-free images. The presence of a metal implant led us to underestimate lesion volume and introduced geometrical errors in segmentation boundaries.MediamaticsElectrical Engineering, Mathematics and Computer Scienc

    Enrichment of Sialylated IgG by Lectin Fractionation Does Not Enhance the Efficacy of Immunoglobulin G in a Murine Model of Immune Thrombocytopenia

    Get PDF
    Intravenous immunoglobulin G (IVIg) is widely used against a range of clinical symptoms. For its use in immune modulating therapies such as treatment of immune thrombocytopenic purpura high doses of IVIg are required. It has been suggested that only a fraction of IVIg causes this anti immune modulating effect. Recent studies indicated that this fraction is the Fc-sialylated IgG fraction. The aim of our study was to determine the efficacy of IVIg enriched for sialylated IgG (IVIg-SA (+)) in a murine model of passive immune thrombocytopenia (PIT). We enriched IVIg for sialylated IgG by Sambucus nigra agglutinin (SNA) lectin fractionation and determined the degree of sialylation. Analysis of IVIg-SA (+) using a lectin-based ELISA revealed that we enriched predominantly for Fab-sialylated IgG, whereas we did not find an increase in Fc-sialylated IgG. Mass spectrometric analysis confirmed that Fc sialylation did not change after SNA lectin fractionation. The efficacy of sialylated IgG was measured by administering IVIg or IVIg-SA (+) 24 hours prior to an injection of a rat anti-mouse platelet mAb. We found an 85% decrease in platelet count after injection of an anti-platelet mAb, which was reduced to a 70% decrease by injecting IVIg (p<0.01). In contrast, IVIg-SA (+) had no effect on the platelet count. Serum levels of IVIg and IVIg-SA (+) were similar, ruling out enhanced IgG clearance as a possible explanation. Our results indicate that SNA lectin fractionation is not a suitable method to enrich IVIg for Fc-sialylated IgG. The use of IVIg enriched for Fab-sialylated IgG abolishes the efficacy of IVIg in the murine PIT model

    In Vivo, Multimodal Imaging of B Cell Distribution and Response to Antibody Immunotherapy in Mice

    Get PDF
    BACKGROUND: B cell depletion immunotherapy has been successfully employed to treat non-Hodgkin's lymphoma. In recent years, increasing attention has been directed towards also using B-cell depletion therapy as a treatment option in autoimmune disorders. However, it appears that the further development of these approaches will depend on a methodology to determine the relation of B-cell depletion to clinical response and how individual patients should be dosed. Thus far, patients have generally been followed by quantification of peripheral blood B cells, but it is not apparent that this measurement accurately reflects systemic B cell dynamics. METHODOLOGY/PRINCIPAL FINDINGS: Cellular imaging of the targeted population in vivo may provide significant insight towards effective therapy and a greater understanding of underlying disease mechanics. Superparamagnetic iron oxide (SPIO) nanoparticles in concert with near infrared (NIR) fluorescent dyes were used to label and track primary C57BL/6 B cells. Following antibody mediated B cell depletion (anti-CD79), NIR-only labeled cells were expeditiously cleared from the circulation and spleen. Interestingly, B cells labeled with both SPIO and NIR were not depleted in the spleen. CONCLUSIONS/SIGNIFICANCE: Whole body fluorescent tracking of B cells enabled noninvasive, longitudinal imaging of both the distribution and subsequent depletion of B lymphocytes in the spleen. Quantification of depletion revealed a greater than 40% decrease in splenic fluorescent signal-to-background ratio in antibody treated versus control mice. These data suggest that in vivo imaging can be used to follow B cell dynamics, but that the labeling method will need to be carefully chosen. SPIO labeling for tracking purposes, generally thought to be benign, appears to interfere with B cell functions and requires further examination

    Differential effects of age, cytomegalovirus-seropositivity and end-stage renal disease (ESRD) on circulating T lymphocyte subsets

    Get PDF
    The age- and cytomegalovirus (CMV)-seropositivity-related changes in subsets and differentiation of circulating T cells were investigated in end-stage renal disease (ESRD) patients (n = 139) and age-matched healthy individuals. The results show that CMV-seropositivity is associated with expansion of both CD4+ and CD8+ memory T cells which is already observed in young healthy individuals. In addition, CMV-seropositive healthy individuals have a more differentiated memory T cell profile. Only CMV-seropositive healthy individuals showed an age-dependent decrease in CD4+ naïve T cells. The age-related decrease in the number of CD8+ naïve T cells was CMV-independent. In contrast, all ESRD patients showed a profound naïve T-cell lymphopenia at every decade. CMV-seropositivity aggravated the contraction of CD4+ naïve T cells and increased the number of differentiated CD4+ and CD8+ memory T cells. In conclusion, CMV-seropositivity markedly alters the homeostasis of circulating T cells in healthy individuals and aggravates the T cell dysregulation observed in ESRD patients

    The invasome of Salmonella Dublin as revealed by whole genome sequencing

    Get PDF
    Background Salmonella enterica serovar Dublin is a zoonotic infection that can be transmitted from cattle to humans through consumption of contaminated milk and milk products. Outbreaks of human infections by S. Dublin have been reported in several countries including high-income countries. A high proportion of S. Dublin cases in humans are associated with invasive disease and systemic illness. The genetic basis of virulence in S. Dublin is not well characterized. Methods Whole genome sequencing was applied to a set of clinical invasive and non-invasive S. Dublin isolates from different countries in order to characterize the putative genetic determinants involved in the virulence and invasiveness of S. Dublin in humans. Results We identified several virulence factors that form the bacterial invasome and may contribute to increasing bacterial virulence and pathogenicity including mainly Gifsy-2 prophage, two different type 6 secretion systems (T6SSs) harbored by Salmonella pathogenicity islands; SPI-6 and SPI-19 respectively and virulence genes; ggt and PagN. Although Vi antigen and the virulence plasmid have been reported previously to contribute to the virulence of S. Dublin we did not detect them in all invasive isolates indicating that they are not the main virulence determinants in S. Dublin. Conclusion Several virulence factors within the genome of S. Dublin might contribute to the ability of S. Dublin to invade humans’ blood but there were no genomic markers that differentiate invasive from non-invasive isolates suggesting that host immune response play a crucial role in the clinical outcome of S. Dublin infection

    Neutralizing and non-neutralizing monoclonal antibodies against dengue virus E protein derived from a naturally infected patient

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Antibodies produced in response to infection with any of the four serotypes of dengue virus generally provide homotypic immunity. However, prior infection or circulating maternal antibodies can also mediate a non-protective antibody response that can enhance the course of disease in a subsequent heterotypic infection. Naturally occurring human monoclonal antibodies can help us understand the protective and pathogenic roles of the humoral immune system in dengue virus infection.</p> <p>Results</p> <p>Epstein-Barr Virus (EBV) transformation of B cells isolated from the peripheral blood of a human subject with previous dengue infection was performed. B cell cultures were screened by ELISA for antibodies to dengue (DENV) envelope (E) protein. ELISA positive cultures were cloned by limiting dilution. Three IgG1 human monoclonal antibodies (HMAbs) were purified and their binding specificity to E protein was verified by ELISA and biolayer interferometry. Neutralization and enhancement assays were conducted in epithelial and macrophage-like cell lines, respectively. All three HMAbs bound to E from at least two of the four DENV serotypes, one of the HMAbs was neutralizing, and all were able to enhance DENV infection.</p> <p>Conclusions</p> <p>HMAbs against DENV can be successfully generated by EBV transformation of B cells from patients at least two years after naturally acquired DENV infections. These antibodies show different patterns of cross-reactivity, neutralizing, and enhancement activity.</p
    • …
    corecore