64 research outputs found

    Linewidth of single photon transitions in Mn12_{12}-acetate

    Full text link
    We use time-domain terahertz spectroscopy to measure the position and linewidth of single photon transitions in Mn12_{12}-acetate. This linewidth is compared to the linewidth measured in tunneling experiments. We conclude that local magnetic fields (due to dipole or hyperfine interactions) cannot be responsible for the observed linewidth, and suggest that the linewidth is due to variations in the anisotropy constants for different clusters. We also calculate a lower limit on the dipole field distribution that would be expected due to random orientations of clusters and find that collective effects must narrow this distribution in tunneling measurements.Comment: 5 pages, accepted to Physical Review

    SARS-CoV-2 mRNA vaccine design enabled by prototype pathogen preparedness

    Get PDF
    A vaccine for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is needed to control the coronavirus disease 2019 (COVID-19) global pandemic. Structural studies have led to the development of mutations that stabilize Betacoronavirus spike proteins in the prefusion state, improving their expression and increasing immunogenicity1. This principle has been applied to design mRNA-1273, an mRNA vaccine that encodes a SARS-CoV-2 spike protein that is stabilized in the prefusion conformation. Here we show that mRNA-1273 induces potent neutralizing antibody responses to both wild-type (D614) and D614G mutant2 SARS-CoV-2 as well as CD8+ T cell responses, and protects against SARS-CoV-2 infection in the lungs and noses of mice without evidence of immunopathology. mRNA-1273 is currently in a phase III trial to evaluate its efficacy
    corecore