54 research outputs found

    Genetic Analysis of Kafirins and Their Phenotypic Correlations with Feed Quality Traits, In Vitro Digestibility, and Seed Weight in Grain Sorghum

    Get PDF
    Twenty-three entries of grain sorghum (Sorghum bicolor (L.) Moench), including eight inbred lines (five males and three females) and 15 hybrids, were evaluated to determine the proportion of γ, αII, and β-αI-kafirins and their association with contents of crude protein, fat, and starch; protein digestibility; in vitro dry matter disappearance; and seed weight. The male lines included three normal-seeded lines (TX2737, TX435, and P954063) and two large-seeded lines (Eastin1 and PL-1). Female lines consisted of three common U.S. seed parent lines (Wheatland, Redlan, and SA3042). The lines and their hybrids were grown under dryland conditions at two locations in Kansas using a randomized complete block design. The effects of genotype, location, and males were significant for all kafirins. Wide variations in composition and general combining ability (GCA) for kafirin content were noted among parent lines and hybrids, with TX2737, Eastin1, and PL1 having the largest GCA values for γ (1.37), αII (1.99), and β-αI (2.57), respectively. Correlations among kafirins ranged from –0.89 to 0, whereas those of kafirins with feed quality traits, digestibility, and seed weight ranged from –0.45 to 0.48

    Genetic Analysis of Kafirins and Their Phenotypic Correlations with Feed Quality Traits, In Vitro Digestibility, and Seed Weight in Grain Sorghum

    Get PDF
    Twenty-three entries of grain sorghum (Sorghum bicolor (L.) Moench), including eight inbred lines (five males and three females) and 15 hybrids, were evaluated to determine the proportion of γ, αII, and β-αI-kafirins and their association with contents of crude protein, fat, and starch; protein digestibility; in vitro dry matter disappearance; and seed weight. The male lines included three normal-seeded lines (TX2737, TX435, and P954063) and two large-seeded lines (Eastin1 and PL-1). Female lines consisted of three common U.S. seed parent lines (Wheatland, Redlan, and SA3042). The lines and their hybrids were grown under dryland conditions at two locations in Kansas using a randomized complete block design. The effects of genotype, location, and males were significant for all kafirins. Wide variations in composition and general combining ability (GCA) for kafirin content were noted among parent lines and hybrids, with TX2737, Eastin1, and PL1 having the largest GCA values for γ (1.37), αII (1.99), and β-αI (2.57), respectively. Correlations among kafirins ranged from –0.89 to 0, whereas those of kafirins with feed quality traits, digestibility, and seed weight ranged from –0.45 to 0.48

    Associations of Starch Gel Hardness, Granule Size, Waxy Allelic Expression, Thermal Pasting, Milling Quality, and Kernel Texture of 12 Soft Wheat Cultivars

    Full text link
    Starches were isolated from 12 soft wheat (Triticum aestivum L.) cultivars and were characterized for waxy (Wx) allelic expression, thermal pasting characteristics, and starch granule size. Gels were produced from the thermally degraded starches and were evaluated using large deformation rheological measurements. Data were compared with cultivar kernel texture, milling characteristics, starch chemical analyses, and flour pasting characteristics. Larger flour yields were produced from cultivars that had larger starch granules. Flour yield also was correlated with lower amylose content and greater starch content. Harder starch gels were correlated with higher levels of amylose content and softer kernel texture. The cultivar Fillmore, which had a partial waxy mutation at the B locus, produced the highest peak pasting viscosity and the lowest gel hardness. Softer textured wheats had greater lipid‐complexed amylose and starch phosphorus contents and had less total starch content. Among these wheats of the soft market class, softer textured wheats had larger starch granules and harder textured wheats had smaller starch granules. In part, this may explain why soft wheats vary in texture. The smaller granules have larger surface area available for noncovalent bonding with the endosperm protein matrix and they also may pack more efficiently, producing harder endosperm.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/141588/1/cche0163.pd

    Effectiveness of Germination on Protein Hydrolysis as a Way to Reduce Adverse Reactions to Wheat

    No full text
    In this work, the aim is to study the effectiveness of germination on wheat protein degradation, with a specific focus on proteins involved in adverse reactions to wheat. The effects of 8 days of germination at 25 °C on the chemical composition and the protein profile were determined. Germination did not have a significant effect on starch, protein, lipid, and ash contents. General protein profile, as indicated by SDS-PAGE analysis, revealed that germination induced a relevant degradation in protein fraction. After in vitro gastrointestinal digestion, gluten peptides involved in celiac disease (CD) were identified and quantified using UPLC/ESI-MS technique. Also, CM3 protein, involved in baker's asthma and intestinal inflammation, was quantified by measuring a marker peptide. Statistical analysis underlined that germination and genotype had significant impact on the amount of both components. Regarding gluten peptides related to CD, germination enabled an average reduction of 47% in peptides eliciting adaptive immune response and 46% in peptides eliciting innate immune response. CM3 protein showed also a high average reduction (56%). Thus, this study suggests that germination might be a good bioalternative to provide a low "impact" raw ingredient for special wheat-based foodstuffs
    corecore