262 research outputs found

    Sequential Quantum Teleportation of Optical Coherent States

    Full text link
    We demonstrate a sequence of two quantum teleportations of optical coherent states, combining two high-fidelity teleporters for continuous variables. In our experiment, the individual teleportation fidelities are evaluated as F_1 = 0.70 \pm 0.02 and F_2 = 0.75 \pm 0.02, while the fidelity between the input and the sequentially teleported states is determined as F^{(2)} = 0.57 \pm 0.02. This still exceeds the optimal fidelity of one half for classical teleportation of arbitrary coherent states and almost attains the value of the first (unsequential) quantum teleportation experiment with optical coherent states.Comment: 5page, 4figure

    Teleportation is necessary for faithful quantum state transfer through noisy channels of maximal rank

    Full text link
    Quantum teleportation enables deterministic and faithful transmission of quantum states, provided a maximally entangled state is pre-shared between sender and receiver, and a one-way classical channel is available. Here, we prove that these resources are not only sufficient, but also necessary, for deterministically and faithfully sending quantum states through any fixed noisy channel of maximal rank, when a single use of the cannel is admitted. In other words, for this family of channels, there are no other protocols, based on different (and possibly cheaper) sets of resources, capable of replacing quantum teleportation.Comment: 4 pages, comments are welcom

    Quantum versus classical domains for teleportation with continuous variables

    Get PDF
    By considering the utilization of a classical channel without quantum entanglement, fidelity Fclassical=1/2 has been established as setting the boundary between classical and quantum domains in the teleportation of coherent states of the electromagnetic field [S. L. Braunstein, C. A. Fuchs, and H. J. Kimble, J. Mod. Opt. 47, 267 (2000)]. We further examine the quantum-classical boundary by investigating questions of entanglement and Bell-inequality violations for the Einstein-Podolsky-Rosen states relevant to continuous variable teleportation. The threshold fidelity for employing entanglement as a quantum resource in teleportation of coherent states is again found to be Fclassical=1/2. Likewise, violations of local realism onset at this same threshold, with the added requirement of overall efficiency η>2/3 in the unconditional case. By contrast, recently proposed criteria adapted from the literature on quantum-nondemolition detection are shown to be largely unrelated to the questions of entanglement and Bell-inequality violations

    Quantum Repeaters using Coherent-State Communication

    Full text link
    We investigate quantum repeater protocols based upon atomic qubit-entanglement distribution through optical coherent-state communication. Various measurement schemes for an optical mode entangled with two spatially separated atomic qubits are considered in order to nonlocally prepare conditional two-qubit entangled states. In particular, generalized measurements for unambiguous state discrimination enable one to completely eliminate spin-flip errors in the resulting qubit states, as they would occur in a homodyne-based scheme due to the finite overlap of the optical states in phase space. As a result, by using weaker coherent states, high initial fidelities can still be achieved for larger repeater spacing, at the expense of lower entanglement generation rates. In this regime, the coherent-state-based protocols start resembling single-photon-based repeater schemes.Comment: 11 pages, 8 figure

    Entanglement properties of optical coherent states under amplitude damping

    Full text link
    Through concurrence, we characterize the entanglement properties of optical coherent-state qubits subject to an amplitude damping channel. We investigate the distillation capabilities of known error correcting codes and obtain upper bounds on the entanglement depending on the non-orthogonality of the coherent states and the channel damping parameter. This work provides a first, full quantitative analysis of these photon-loss codes which are naturally reminiscent of the standard qubit codes against Pauli errors.Comment: 7 pages, 6 figures. Revised version with small corrections; main results remain unaltere

    Broadband teleportation

    Get PDF
    Quantum teleportation of an unknown broadband electromagnetic field is investigated. The continuous-variable teleportation protocol by Braunstein and Kimble [Phys. Rev. Lett. {\bf 80}, 869 (1998)] for teleporting the quantum state of a single mode of the electromagnetic field is generalized for the case of a multimode field with finite bandwith. We discuss criteria for continuous-variable teleportation with various sets of input states and apply them to the teleportation of broadband fields. We first consider as a set of input fields (from which an independent state preparer draws the inputs to be teleported) arbitrary pure Gaussian states with unknown coherent amplitude (squeezed or coherent states). This set of input states, further restricted to an alphabet of coherent states, was used in the experiment by Furusawa {\it et al.} [Science {\bf 282}, 706 (1998)]. It requires unit-gain teleportation for optimizing the teleportation fidelity. In our broadband scheme, the excess noise added through unit-gain teleportation due to the finite degree of the squeezed-state entanglement is just twice the (entanglement) source's squeezing spectrum for its ``quiet quadrature.'' The teleportation of one half of an entangled state (two-mode squeezed vacuum state), i.e., ``entanglement swapping,'' and its verification are optimized under a certain nonunit gain condition. We will also give a broadband description of this continuous-variable entanglement swapping based on the single-mode scheme by van Loock and Braunstein [Phys. Rev. A {\bf 61}, 10302 (2000)]Comment: 27 pages, 7 figures, revised version for publication, Physical Review A (August 2000); major changes, in parts rewritte

    Criteria for Continuous-Variable Quantum Teleportation

    Get PDF
    We derive an experimentally testable criterion for the teleportation of quantum states of continuous variables. This criterion is especially relevant to the recent experiment of Furusawa et al. [Science 282, 706-709 (1998)] where an input-output fidelity of 0.58±0.020.58 \pm 0.02 was achieved for optical coherent states. Our derivation demonstrates that fidelities greater than 1/2 could not have been achieved through the use of a classical channel alone; quantum entanglement was a crucial ingredient in the experiment.Comment: 12 pages, to appear in Journal of Modern Optic

    Quantum information with continuous variables

    Full text link
    Quantum information is a rapidly advancing area of interdisciplinary research. It may lead to real-world applications for communication and computation unavailable without the exploitation of quantum properties such as nonorthogonality or entanglement. We review the progress in quantum information based on continuous quantum variables, with emphasis on quantum optical implementations in terms of the quadrature amplitudes of the electromagnetic field.Comment: accepted for publication in Reviews of Modern Physic

    Efficient Heralding of Photonic Qubits with Apllications to Device Independent Quantum Key Distribution

    Full text link
    We present an efficient way of heralding photonic qubit signals using linear optics devices. First we show that one can obtain asymptotically perfect heralding and unit success probability with growing resources. Second, we show that even using finite resources, we can improve qualitatively and quantitatively over earlier heralding results. In the latte r scenario, we can obtain perfect heralded photonic qubits while maintaining a finite success probability. We demonstrate the advantage of our heralding scheme by predicting key rates for device independent quantum key distribution, taking imperfections of sources and detectors into account
    corecore