282 research outputs found
Sub-population analysis based on temporal features of high content images
Background: High content screening techniques are increasingly used to understand the regulation and progression of cell motility. The demand of new platforms, coupled with availability of terabytes of data has challenged the traditional technique of identifying cell populations by manual methods and resulted in development of high-dimensional analytical methods. Results: In this paper, we present sub-populations analysis of cells at the tissue level by using dynamic features of the cells. We used active contour without edges for segmentation of cells, which preserves the cell morphology, and autoregressive modeling to model cell trajectories. The sub-populations were obtained by clustering static, dynamic and a combination of both features. We were able to identify three unique sub-populations in combined clustering. Conclusion: We report a novel method to identify sub-populations using kinetic features and demonstrate that these features improve sub-population analysis at the tissue level. These advances will facilitate the application of high content screening data analysis to new and complex biological problems.Computation and Systems Biology Programme of Singapore--Massachusetts Institute of Technology Allianc
Chinese beliefs in luck are linked to gambling problems via strengthened cognitive biases:A mediation test
10.1007/s10899-017-9690-6Journal of gambling studies3341325-133
Image-Based Assessment of Growth and Signaling Changes in Cancer Cells Mediated by Direct Cell-Cell Contact
Many important biological processes are controlled through cell-cell interactions, including the colonization of metastatic tumor cells and the control of differentiation of stem cells within their niche. Despite the crucial importance of the cellular environment in regulating cellular signaling, in vitro methods for the study of such interactions are difficult and/or indirect.We report on the development of an image-based method for distinguishing two cell types grown in coculture. Furthermore, cells of one type that are in direct contact with cells of a second type (adjacent cells) can be analyzed separately from cells that are not within a single well. Changes are evaluated using population statistics, which are useful in detecting subtle changes across two populations. We have used this system to characterize changes in the LNCaP prostate carcinoma cell line when grown in contact with human vascular endothelial cells (HUVECs). We find that the expression and phosphorylation of WWOX is reduced in LNCaP cells when grown in direct contact with HUVECs. Reduced WWOX signaling has been associated with reduced activation or expression of JNK and p73. We find that p73 levels are also reduced in LNCaP cells grown in contact with HUVECs, but we did not observe such a change in JNK levels.We find that the method described is statistically robust and can be adapted to a wide variety of studies where cell function or signaling are affected by heterotypic cell-cell contact. Ironically, a potential challenge to the method is its high level of sensitivity is capable of classifying events as statistically significant (due to the high number cells evaluated individually), when the biological effect may be less clear. The methodology would be best used in conjunction with additional methods to evaluate the biological role of potentially subtle differences between populations. However, many important events, such as the establishment of a metastatic tumor, occur through rare but important changes, and methods such as we describe here can be used to identify and characterize the contribution of the environment to these changes
Treatment Duration of Febrile Urinary Tract Infections
Although febrile urinary tract infections (UTIs) are relatively common in adults, data on optimal treatment duration are limited. Randomized controlled trials specifically addressing the elderly and patients with comorbidities have not been performed. This review highlights current available evidence. Premenopausal, non-pregnant women without comorbidities can be treated with a 5–7 day regimen of fluoroquinolones in countries with low levels of fluoroquinolone resistance, or, if proven susceptible, with 14 days of trimethoprim-sulfamethoxazole. Oral β-lactams are less effective compared with fluoroquinolones and trimethoprim-sulfamethoxazole. In men with mild to moderate febrile UTI, a 2-week regimen of an oral fluoroquinolone is likely sufficient. Although data are limited, this possibly holds even in the elderly patients with comorbidities or bacteremia
CellCognition : time-resolved phenotype annotation in high-throughput live cell imaging
Author Posting. © The Authors, 2010. This is the author's version of the work. It is posted here by permission of Nature Publishing Group for personal use, not for redistribution. The definitive version was published in Nature Methods 7 (2010): 747-754, doi:10.1038/nmeth.1486.Fluorescence time-lapse imaging has become a powerful tool to investigate complex
dynamic processes such as cell division or intracellular trafficking. Automated
microscopes generate time-resolved imaging data at high throughput, yet tools for
quantification of large-scale movie data are largely missing. Here, we present
CellCognition, a computational framework to annotate complex cellular dynamics.
We developed a machine learning method that combines state-of-the-art classification
with hidden Markov modeling for annotation of the progression through
morphologically distinct biological states. The incorporation of time information into
the annotation scheme was essential to suppress classification noise at state
transitions, and confusion between different functional states with similar
morphology. We demonstrate generic applicability in a set of different assays and
perturbation conditions, including a candidate-based RNAi screen for mitotic exit
regulators in human cells. CellCognition is published as open source software,
enabling live imaging-based screening with assays that directly score cellular
dynamics.Work in the Gerlich
laboratory is supported by Swiss National Science Foundation (SNF) research grant
3100A0-114120, SNF ProDoc grant PDFMP3_124904, a European Young
Investigator (EURYI) award of the European Science Foundation, an EMBO YIP
fellowship, and a MBL Summer Research Fellowship to D.W.G., an ETH TH grant, a
grant by the UBS foundation, a Roche Ph.D. fellowship to M.H.A.S, and a Mueller
fellowship of the Molecular Life Sciences Ph.D. program Zurich to M.H. M.H. and
M.H.A.S are fellows of the Zurich Ph.D. Program in Molecular Life Sciences. B.F.
was supported by European Commission’s seventh framework program project
Cancer Pathways. Work in the Ellenberg laboratory is supported by a European
Commission grant within the Mitocheck consortium (LSHG-CT-2004-503464). Work
in the Peter laboratory is supported by the ETHZ, Oncosuisse, SystemsX.ch (LiverX)
and the SNF
Epidemiology and seasonality of respiratory viral infections in hospitalized children in Kuala Lumpur, Malaysia: a retrospective study of 27 years
<p>Abstract</p> <p>Background</p> <p>Viral respiratory tract infections (RTI) are relatively understudied in Southeast Asian tropical countries. In temperate countries, seasonal activity of respiratory viruses has been reported, particularly in association with temperature, while inconsistent correlation of respiratory viral activity with humidity and rain is found in tropical countries. A retrospective study was performed from 1982-2008 to investigate the viral etiology of children (≤ 5 years old) admitted with RTI in a tertiary hospital in Kuala Lumpur, Malaysia.</p> <p>Methods</p> <p>A total of 10269 respiratory samples from all children ≤ 5 years old received at the hospital's diagnostic virology laboratory between 1982-2008 were included in the study. Immunofluorescence staining (for respiratory syncytial virus (RSV), influenza A and B, parainfluenza types 1-3, and adenovirus) and virus isolation were performed. The yearly hospitalization rates and annual patterns of laboratory-confirmed viral RTIs were determined. Univariate ANOVA was used to analyse the demographic parameters of cases. Multiple regression and Spearman's rank correlation were used to analyse the correlation between RSV cases and meteorological parameters.</p> <p>Results</p> <p>A total of 2708 cases were laboratory-confirmed using immunofluorescence assays and viral cultures, with the most commonly detected being RSV (1913, 70.6%), parainfluenza viruses (357, 13.2%), influenza viruses (297, 11.0%), and adenovirus (141, 5.2%). Children infected with RSV were significantly younger, and children infected with influenza viruses were significantly older. The four main viruses caused disease throughout the year, with a seasonal peak observed for RSV in September-December. Monthly RSV cases were directly correlated with rain days, and inversely correlated with relative humidity and temperature.</p> <p>Conclusion</p> <p>Viral RTIs, particularly due to RSV, are commonly detected in respiratory samples from hospitalized children in Kuala Lumpur, Malaysia. As in temperate countries, RSV infection in tropical Malaysia also caused seasonal yearly epidemics, and this has implications for prophylaxis and vaccination programmes.</p
Effective Rheology of Bubbles Moving in a Capillary Tube
We calculate the average volumetric flux versus pressure drop of bubbles
moving in a single capillary tube with varying diameter, finding a square-root
relation from mapping the flow equations onto that of a driven overdamped
pendulum. The calculation is based on a derivation of the equation of motion of
a bubble train from considering the capillary forces and the entropy production
associated with the viscous flow. We also calculate the configurational
probability of the positions of the bubbles.Comment: 4 pages, 1 figur
Enhanced CellClassifier: a multi-class classification tool for microscopy images
BACKGROUND: Light microscopy is of central importance in cell biology. The recent introduction of automated high content screening has expanded this technology towards automation of experiments and performing large scale perturbation assays. Nevertheless, evaluation of microscopy data continues to be a bottleneck in many projects. Currently, among open source software, CellProfiler and its extension Analyst are widely used in automated image processing. Even though revolutionizing image analysis in current biology, some routine and many advanced tasks are either not supported or require programming skills of the researcher. This represents a significant obstacle in many biology laboratories. RESULTS: We have developed a tool, Enhanced CellClassifier, which circumvents this obstacle. Enhanced CellClassifier starts from images analyzed by CellProfiler, and allows multi-class classification using a Support Vector Machine algorithm. Training of objects can be done by clicking directly "on the microscopy image" in several intuitive training modes. Many routine tasks like out-of focus exclusion and well summary are also supported. Classification results can be integrated with other object measurements including inter-object relationships. This makes a detailed interpretation of the image possible, allowing the differentiation of many complex phenotypes. For the generation of the output, image, well and plate data are dynamically extracted and summarized. The output can be generated as graphs, Excel-files, images with projections of the final analysis and exported as variables. CONCLUSION: Here we describe Enhanced CellClassifier which allows multiple class classification, elucidating complex phenotypes. Our tool is designed for the biologist who wants both, simple and flexible analysis of images without requiring programming skills. This should facilitate the implementation of automated high-content screening
Phenotype Recognition with Combined Features and Random Subspace Classifier Ensemble
<p>Abstract</p> <p>Background</p> <p>Automated, image based high-content screening is a fundamental tool for discovery in biological science. Modern robotic fluorescence microscopes are able to capture thousands of images from massively parallel experiments such as RNA interference (RNAi) or small-molecule screens. As such, efficient computational methods are required for automatic cellular phenotype identification capable of dealing with large image data sets. In this paper we investigated an efficient method for the extraction of quantitative features from images by combining second order statistics, or Haralick features, with curvelet transform. A random subspace based classifier ensemble with multiple layer perceptron (MLP) as the base classifier was then exploited for classification. Haralick features estimate image properties related to second-order statistics based on the grey level co-occurrence matrix (GLCM), which has been extensively used for various image processing applications. The curvelet transform has a more sparse representation of the image than wavelet, thus offering a description with higher time frequency resolution and high degree of directionality and anisotropy, which is particularly appropriate for many images rich with edges and curves. A combined feature description from Haralick feature and curvelet transform can further increase the accuracy of classification by taking their complementary information. We then investigate the applicability of the random subspace (RS) ensemble method for phenotype classification based on microscopy images. A base classifier is trained with a RS sampled subset of the original feature set and the ensemble assigns a class label by majority voting.</p> <p>Results</p> <p>Experimental results on the phenotype recognition from three benchmarking image sets including HeLa, CHO and RNAi show the effectiveness of the proposed approach. The combined feature is better than any individual one in the classification accuracy. The ensemble model produces better classification performance compared to the component neural networks trained. For the three images sets HeLa, CHO and RNAi, the Random Subspace Ensembles offers the classification rates 91.20%, 98.86% and 91.03% respectively, which compares sharply with the published result 84%, 93% and 82% from a multi-purpose image classifier WND-CHARM which applied wavelet transforms and other feature extraction methods. We investigated the problem of estimation of ensemble parameters and found that satisfactory performance improvement could be brought by a relative medium dimensionality of feature subsets and small ensemble size.</p> <p>Conclusions</p> <p>The characteristics of curvelet transform of being multiscale and multidirectional suit the description of microscopy images very well. It is empirically demonstrated that the curvelet-based feature is clearly preferred to wavelet-based feature for bioimage descriptions. The random subspace ensemble of MLPs is much better than a number of commonly applied multi-class classifiers in the investigated application of phenotype recognition.</p
- …