Abstract

Author Posting. © The Authors, 2010. This is the author's version of the work. It is posted here by permission of Nature Publishing Group for personal use, not for redistribution. The definitive version was published in Nature Methods 7 (2010): 747-754, doi:10.1038/nmeth.1486.Fluorescence time-lapse imaging has become a powerful tool to investigate complex dynamic processes such as cell division or intracellular trafficking. Automated microscopes generate time-resolved imaging data at high throughput, yet tools for quantification of large-scale movie data are largely missing. Here, we present CellCognition, a computational framework to annotate complex cellular dynamics. We developed a machine learning method that combines state-of-the-art classification with hidden Markov modeling for annotation of the progression through morphologically distinct biological states. The incorporation of time information into the annotation scheme was essential to suppress classification noise at state transitions, and confusion between different functional states with similar morphology. We demonstrate generic applicability in a set of different assays and perturbation conditions, including a candidate-based RNAi screen for mitotic exit regulators in human cells. CellCognition is published as open source software, enabling live imaging-based screening with assays that directly score cellular dynamics.Work in the Gerlich laboratory is supported by Swiss National Science Foundation (SNF) research grant 3100A0-114120, SNF ProDoc grant PDFMP3_124904, a European Young Investigator (EURYI) award of the European Science Foundation, an EMBO YIP fellowship, and a MBL Summer Research Fellowship to D.W.G., an ETH TH grant, a grant by the UBS foundation, a Roche Ph.D. fellowship to M.H.A.S, and a Mueller fellowship of the Molecular Life Sciences Ph.D. program Zurich to M.H. M.H. and M.H.A.S are fellows of the Zurich Ph.D. Program in Molecular Life Sciences. B.F. was supported by European Commission’s seventh framework program project Cancer Pathways. Work in the Ellenberg laboratory is supported by a European Commission grant within the Mitocheck consortium (LSHG-CT-2004-503464). Work in the Peter laboratory is supported by the ETHZ, Oncosuisse, SystemsX.ch (LiverX) and the SNF

    Similar works