34 research outputs found

    Association between Aldehyde Dehydrogenase 2 Glu504Lys Polymorphism and Alcoholic Liver Disease

    Get PDF
    Background Only a subset of patients with excessive alcohol use develop alcoholic liver disease (ALD); though the exact mechanism is not completely understood. Once ingested, alcohol is metabolized by 2 key oxidative enzymes, alcohol (ADH) and aldehyde dehydrogenase (ALDH). There are 2 major ALDH isoforms, cytosolic and mitochondrial, encoded by the aldehyde ALDH1 and ALDH2 genes, respectively. The ALDH2 gene was hypothesized to alter genetic susceptibility to alcohol dependence and alcohol-induced liver diseases. The aim of this study is to determine the association between aldehyde dehydrogenase 2 (rs671) glu504lys polymorphism and ALD. Methods ALDH2 genotype was performed in 535 healthy controls and 281 patients with ALD. Results The prevalence of the common form of the SNP rs671, 504glu (glu/glu) was significantly higher in patients with ALD (95.4%) compared to that of controls (73.7%, p<0.0001). Among controls, 23.7% had heterozygous (glu/lys) genotype when compared to 4.6% in those with ALD (OR 0.16, 95%CI 0.09–0.28). The allele frequency for 504lys allele in patients with ALD was 2.3%; compared to 14.5% in healthy controls (OR 0.13, 95%CI 0.07–0.24). Conclusions Patients with ALDH2 504lys variant were less associated with ALD compared to those with ALDH2 504glu using both genotypic and allelic analyses

    Insights into the reduction of antibiotic-resistant bacteria and mobile antibiotic resistance genes by black soldier fly larvae in chicken manure

    Get PDF
    The increasing prevalence of antibiotic-resistant bacteria (ARB) from animal manure has raised concerns about the potential threats to public health. The bioconversion of animal manure with insect larvae, such as the black soldier fly larvae (BSFL, Hermetia illucens [L.]), is a promising technology for quickly attenuating ARB while also recycling waste. In this study, we investigated BSFL conversion systems for chicken manure. Using metagenomic analysis, we tracked ARB and evaluated the resistome dissemination risk by investigating the co-occurrence of antibiotic resistance genes (ARGs), mobile genetic elements (MGEs), and bacterial taxa in a genetic context. Our results indicated that BSFL treatment effectively mitigated the relative abundance of ARB, ARGs, and MGEs by 34.9%, 53.3%, and 37.9%, respectively, within 28 days. Notably, the transferable ARGs decreased by 30.9%, indicating that BSFL treatment could mitigate the likelihood of ARG horizontal transfer and thus reduce the risk of ARB occurrence. In addition, the significantly positive correlation links between antimicrobial concentration and relative abundance of ARB reduced by 44.4%. Moreover, using variance partition analysis (VPA), we identified other bacteria as the most important factor influencing ARB, explaining 20.6% of the ARB patterns. Further analysis suggested that antagonism of other bacteria on ARB increased by 1.4 times, while nutrient competition on both total nitrogen and crude fat increased by 2.8 times. Overall, these findings provide insight into the mechanistic understanding of ARB reduction during BSFL treatment of chicken manure and provide a strategy for rapidly mitigating ARB in animal manure.This work was funding by the National Natural Science Foundation of China (41977279), the Fundamental Research Funds for the Central Universities (2662020SKPY002 and 2662022SKYJ006), the Key Technology R & D Program of Hubei Province (2021BBA258) and the Major Project of Hubei Hongshan Laboratory (2022hszd013).Peer ReviewedPostprint (published version

    The Allocation of Carbon Intensity Reduction Target by 2030 among Cities in China

    No full text
    The regional allocation of carbon emission quotas is of great significance to realize the carbon emission target. Basing on the combination of the multi-index method and the improved equal-proportion distribution method, and fully considering the differences in economic factors, population factors, energy factors, technological factors among cities, China&rsquo;s 2030 carbon intensity reduction target was allocated. The results indicate that: (1) Under the target constraint of 60% reduction in CO2 emissions per unit of Gross Domestic Product (GDP) (carbon intensity) in 2030 compared to 2005, the carbon intensity target reduction rate (CITRR) of 285 Chinese cities is between 17.65% and 141.14%, with an average reduction rate of 51.52%; (2) the CITRR of cities presents significant spatial positive correlation, and the Global Moran I correlation index is 0.38; and (3) the distribution trend of CITRR is the same as the general trend of economic development of China, showing a basic trend of gradual decline from south to north and from coastal to inland. The allocation method takes into account fairness and efficiency, and reflects the differences between cities, so that the allocation results are likely to be accepted by all parties. Meanwhile, this method breaks the limitation of the lack of city&rsquo;s data and is likely to implement in actual operation. Cities should choose distinguished low-carbon economic development paths, in combination with their characteristics of economic and social development, and carry out inter-city cooperation to promote carbon emission reduction steadily

    The Evolution of Sustainable Development Theory: Types, Goals, and Research Prospects

    No full text
    Sustainable development (SD) has become a fundamental strategy to guide the world&rsquo;s social and economic transformation. However, in the process of practice, there are still misinterpretations in regards to the theory of SD. Such misinterpretations are highlighted in the struggle between strong and weak sustainable development paths, and the confusion of the concept of intra-generational and inter-generational justice. In this paper, the literature survey method, induction method, and normative analysis were adopted to clarify the gradual evolution and improvement process of the concept and objective of SD, to strengthen the comprehensive understanding of the SD theory. Moreover, we also tried to bring in the situation and concepts of China. The results show that the theory of SD has gone through three periods: the embryonic period (before 1972), the molding period (1972&ndash;1987), and the developing period (1987&ndash;present). SD is gradually implemented into a global action from the initial fuzzy concept, including increasing practical wisdom. The goal of SD evolves from pursuing the single goal of sustainable use of natural resources to Millennium Development Goals (MDGs) and Sustainable Development Goals (SDGs). This paper argues that the theory of strong sustainability should be the accepted concept of SD. Culture, good governance, and life support systems are important factors in promoting SD

    A Dynamic Benchmark System for Per Capita Carbon Emissions in Low-Carbon Counties of China

    No full text
    As the most basic unit of the national economy and administrative management, the low-carbon transformation of the vast counties is of great significance to China&rsquo;s overall greenhouse gas emission reduction. Although the low-carbon evaluation (LCE) indicator system and benchmarks have been extensively studied, most benchmarks ignore the needs of the evaluated object at the development stage. When the local economy develops to a certain level, it may be restricted by static low-carbon target constraints. This study reviews the relevant research on LCE indicator system and benchmarks based on convergence. The Environmental Kuznets Curve (EKC), a dynamic benchmark system for per capita carbon emissions (PCCEs), is proposed for low-carbon counties. Taking Changxing County, Zhejiang Province, China as an example, a dynamic benchmark for PCCEs was established by benchmarking the Carbon Kuznets Curve (CKC) of best practices. Based on the principles of best practice, comparability, data completeness, and the CKC hypothesis acceptance, the best practice database is screened, and Singapore is selected as a potential benchmark. By constructing an econometric model to conduct an empirical study on Singapore&rsquo;s CKC hypothesis, the regression results of the least squares method support the CKC hypothesis and its rationality as a benchmark. The result of the PCCE benchmarks of Changxing County show that when the per capita income of Changxing County in 2025, 2030, and 2035 reaches USD 19,172.92, USD 24,483.01, and USD 29,366.11, respectively, the corresponding benchmarks should be 14.95 tons CO2/person, 14.70 tons CO2/person, and 13.55 tons CO2/person. For every 1% increase in the county&rsquo;s per capita income, the PCCE allowable room for growth is 17.6453%. The turning point is when the per capita gross domestic product (PCGDP) is USD 20,843.23 and the PCCE is 15.03 tons of CO2/person, which will occur between 2025 and 2030. Prior to this, the PCCE benchmark increases with the increase of PCGDP. After that, the PCCE benchmark decreases with the increase of PCGDP. The system is economically sensitive, adaptable to different development stages, and enriches the methodology of low-carbon indicator evaluation and benchmark setting at the county scale. It can provide scientific basis for Chinese county decision makers to formulate reasonable targets under the management idea driven by evaluation indicators and emission reduction targets and help counties explore the coordinated paths of economic development and emission reduction in different development stages. It has certain reference significance for other developing regions facing similar challenges of economic development and low-carbon transformation to Changxing County to formulate scientific and reasonable low-carbon emission reduction targets

    A Dynamic Benchmark System for Per Capita Carbon Emissions in Low-Carbon Counties of China

    No full text
    As the most basic unit of the national economy and administrative management, the low-carbon transformation of the vast counties is of great significance to China’s overall greenhouse gas emission reduction. Although the low-carbon evaluation (LCE) indicator system and benchmarks have been extensively studied, most benchmarks ignore the needs of the evaluated object at the development stage. When the local economy develops to a certain level, it may be restricted by static low-carbon target constraints. This study reviews the relevant research on LCE indicator system and benchmarks based on convergence. The Environmental Kuznets Curve (EKC), a dynamic benchmark system for per capita carbon emissions (PCCEs), is proposed for low-carbon counties. Taking Changxing County, Zhejiang Province, China as an example, a dynamic benchmark for PCCEs was established by benchmarking the Carbon Kuznets Curve (CKC) of best practices. Based on the principles of best practice, comparability, data completeness, and the CKC hypothesis acceptance, the best practice database is screened, and Singapore is selected as a potential benchmark. By constructing an econometric model to conduct an empirical study on Singapore’s CKC hypothesis, the regression results of the least squares method support the CKC hypothesis and its rationality as a benchmark. The result of the PCCE benchmarks of Changxing County show that when the per capita income of Changxing County in 2025, 2030, and 2035 reaches USD 19,172.92, USD 24,483.01, and USD 29,366.11, respectively, the corresponding benchmarks should be 14.95 tons CO2/person, 14.70 tons CO2/person, and 13.55 tons CO2/person. For every 1% increase in the county’s per capita income, the PCCE allowable room for growth is 17.6453%. The turning point is when the per capita gross domestic product (PCGDP) is USD 20,843.23 and the PCCE is 15.03 tons of CO2/person, which will occur between 2025 and 2030. Prior to this, the PCCE benchmark increases with the increase of PCGDP. After that, the PCCE benchmark decreases with the increase of PCGDP. The system is economically sensitive, adaptable to different development stages, and enriches the methodology of low-carbon indicator evaluation and benchmark setting at the county scale. It can provide scientific basis for Chinese county decision makers to formulate reasonable targets under the management idea driven by evaluation indicators and emission reduction targets and help counties explore the coordinated paths of economic development and emission reduction in different development stages. It has certain reference significance for other developing regions facing similar challenges of economic development and low-carbon transformation to Changxing County to formulate scientific and reasonable low-carbon emission reduction targets

    Standardization of the Evaluation Index System for Low-Carbon Cities in China: A Case Study of Xiamen

    No full text
    The construction of a reasonable evaluation index system for low-carbon cities is an important part of China&rsquo;s green development strategy in urban areas. In this study, based on the theoretical framework for the concept of low-carbon cities, the perspectives from three index systems&mdash;that is, the Drivers, Pressures, State, Impact, Response model of intervention (DPSIR), a complex ecosystem, and a carbon source/sink process&mdash;were integrated to extract common indicators from existing evaluation index systems for low-carbon cities. Subsequently, a standardized evaluation index system for low-carbon cities that contained five indicators&mdash;carbon emission, low carbon production, low carbon consumption, low-carbon policy, and social economic development&mdash;was established. Thereafter, Xiamen was selected for an empirical analysis by determining the indicator weight with an entropy weight method and by carrying out a comprehensive evaluation using a linear summation model. The results showed that the weights of the five selected primary indicators for the evaluation of low-carbon cities were: low-carbon production &gt; low-carbon consumption &gt; social economic development &gt; carbon emission &gt; low-carbon policy. Among the secondary indicators, the average entropy weight of &ldquo;pollution emission&rdquo; was the highest at 0.1591, while the average entropy weight of &ldquo;urbanization rate&rdquo; was the lowest at 0.0360. Furthermore, the comprehensive index of low-carbon development in 2015 was higher than that in 2010, while the rate of economic growth was greater than the growth rate of carbon emission, which indicated that the relative decoupling of economic growth from carbon emission was basically achieved

    A Cask Evaluation Model to Assess Safety in Chinese Rural Roads

    No full text
    Suburban roads are an important part of China&#8217;s road network and essential infrastructure for rural development. Poorly designed road curves and scarcity of traffic signs have caused an excessively high traffic accident rate in plain topographical areas. In this study, an approach to evaluate and improve rural road traffic safety is introduced. Based on fuzzy and cask theory and weighted analysis, a cask evaluation model is built. It provides a quantitative instant method for analyzing road safety in the absence of traffic accident information or rigorous road space data, by identifying dangerous sections and key impact factors, and ultimately help to put forward traffic safety improvements. Based on the application to a specific section of Xiaodang Central Road in the Fengxian District of Shanghai, the result shows that the pavement conditions of cement-hardened dual-lane rural roads was good, but traffic safety was poor. Missing traffic signs, unreasonable road alignment, and poor roadside conditions were the main problems. Finally, improvements of the short-stave subsystem were proposed: the location of guide signs and roadside conditions should be improved, and the number and efficacy of the rural road traffic signs need to be increased, and markings should be and receive regular maintenance
    corecore