10 research outputs found

    Determining the extent and frequency of on-site monitoring: a bayesian risk-based approach

    No full text
    Abstract Background On-site monitoring is a crucial component of quality control in clinical trials. However, many cast doubt on its cost-effectiveness due to various issues, such as a lack of monitoring focus that could assist in prioritizing limited resources during a site visit. Consequently, an increasing number of trial sponsors are implementing a hybrid monitoring strategy that combines on-site monitoring with centralised monitoring. One of the primary objectives of centralised monitoring, as stated in the clinical trial guidelines, is to guide and adjust the extent and frequency of on-site monitoring. Quality tolerance limits (QTLs) introduced in ICH E6(R2) and thresholds proposed by TransCelerate Biopharma are two existing approaches for achieving this objective at the trial- and site-levels, respectively. The funnel plot, as another threshold-based site-level method, overcomes the limitation of TransCelerate’s method by adjusting thresholds flexibly based on site sizes. Nonetheless, both methods do not transparently explain the reason for choosing the thresholds that they used or whether their choices are optimal in any certain sense. Additionally, related Bayesian monitoring methods are also lacking. Methods We propose a simple, transparent, and user-friendly Bayesian-based risk boundary for determining the extent and frequency of on-site monitoring both at the trial- and site-levels. We developed a four-step approach, including: 1) establishing risk levels for key risk indicators (KRIs) along with their corresponding monitoring actions and estimates; 2) calculating the optimal risk boundaries; 3) comparing the outcomes of KRIs against the optimal risk boundaries; and 4) providing recommendations based on the comparison results. Our method can be used to identify the optimal risk boundaries within an established risk level range and is applicable to continuous, discrete, and time-to-event endpoints. Results We evaluate the performance of the proposed risk boundaries via simulations that mimic various realistic clinical trial scenarios. The performance of the proposed risk boundaries is compared against the funnel plot using real clinical trial data. The results demonstrate the applicability and flexibility of the proposed method for clinical trial monitoring. Moreover, we identify key factors that affect the optimality and performance of the proposed risk boundaries, respectively. Conclusion Given the aforementioned advantages of the proposed risk boundaries, we expect that they will benefit the clinical trial community at large, in particular in the realm of risk-based monitoring

    Estimation of Weight and Body Measurement Model for Pigs Based on Back Point Cloud Data

    No full text
    Pig farming is a crucial sector in global animal husbandry. The weight and body dimension data of pigs reflect their growth and development status, serving as vital metrics for assessing their progress. Presently, pig weight and body dimensions are predominantly measured manually, which poses challenges such as difficulties in herding, stress responses in pigs, and the control of zoonotic diseases. To address these issues, this study proposes a non-contact weight estimation and body measurement model based on point cloud data from pig backs. A depth camera was installed above a weighbridge to acquire 3D point cloud data from 258 Yorkshire–Landrace crossbred sows. We selected 200 Yorkshire–Landrace sows as the research subjects and applied point cloud filtering and denoising techniques to their three-dimensional point cloud data. Subsequently, a K-means clustering segmentation algorithm was employed to extract the point cloud corresponding to the pigs’ backs. A convolutional neural network with a multi-head attention was established for pig weight prediction and added RGB information as an additional feature. During the data processing process, we also measured the back body size information of the pigs. During the model evaluation, 58 Yorkshire–Landrace sows were specifically selected for experimental assessment. Compared to manual measurements, the weight estimation exhibited an average absolute error of 11.552 kg, average relative error of 4.812%, and root mean square error of 11.181 kg. Specifically, for the MACNN, incorporating RGB information as an additional feature resulted in a decrease of 2.469 kg in the RMSE, a decrease of 0.8% in the MAPE, and a decrease of 1.032 kg in the MAE. Measurements of shoulder width, abdominal width, and hip width yielded corresponding average relative errors of 3.144%, 3.798%, and 3.820%. In conclusion, a convolutional neural network with a multi-head attention was established for pig weight prediction, and incorporating RGB information as an additional feature method demonstrated accuracy and reliability for weight estimation and body dimension measurement

    Improved YOLOv8 Model for Lightweight Pigeon Egg Detection

    No full text
    In response to the high breakage rate of pigeon eggs and the significant labor costs associated with egg-producing pigeon farming, this study proposes an improved YOLOv8-PG (real versus fake pigeon egg detection) model based on YOLOv8n. Specifically, the Bottleneck in the C2f module of the YOLOv8n backbone network and neck network are replaced with Fasternet-EMA Block and Fasternet Block, respectively. The Fasternet Block is designed based on PConv (Partial Convolution) to reduce model parameter count and computational load efficiently. Furthermore, the incorporation of the EMA (Efficient Multi-scale Attention) mechanism helps mitigate interference from complex environments on pigeon-egg feature-extraction capabilities. Additionally, Dysample, an ultra-lightweight and effective upsampler, is introduced into the neck network to further enhance performance with lower computational overhead. Finally, the EXPMA (exponential moving average) concept is employed to optimize the SlideLoss and propose the EMASlideLoss classification loss function, addressing the issue of imbalanced data samples and enhancing the model’s robustness. The experimental results showed that the F1-score, mAP50-95, and mAP75 of YOLOv8-PG increased by 0.76%, 1.56%, and 4.45%, respectively, compared with the baseline YOLOv8n model. Moreover, the model’s parameter count and computational load are reduced by 24.69% and 22.89%, respectively. Compared to detection models such as Faster R-CNN, YOLOv5s, YOLOv7, and YOLOv8s, YOLOv8-PG exhibits superior performance. Additionally, the reduction in parameter count and computational load contributes to lowering the model deployment costs and facilitates its implementation on mobile robotic platforms

    A Novel Method for Broiler Abnormal Sound Detection Using WMFCC and HMM

    No full text
    Broilers produce abnormal sounds such as cough and snore when they suffer from respiratory diseases. The aim of this research work was to develop a method for broiler abnormal sound detection. The sounds were recorded in a broiler house for one week (24/7). There were 20 thousand white feather broilers reared on the floor in a building. Results showed that the developed recognition algorithm, using wavelet transform Mel frequency cepstrum coefficients (WMFCCs), correlation distance Fisher criterion (CDF), and hidden Markov model (HMM), provided an average accuracy, precision, recall, and F1 of 93.8%, 94.4%, 94.1%, and 94.2%, respectively, for broiler sound samples. The results indicate that sound analysis can be used in broiler respiratory assessment in a commercial broiler farm

    Sow Farrowing Early Warning and Supervision for Embedded Board Implementations

    No full text
    Sow farrowing is an important part of pig breeding. The accurate and effective early warning of sow behaviors in farrowing helps breeders determine whether it is necessary to intervene with the farrowing process in a timely manner and is thus essential for increasing the survival rate of piglets and the profits of pig farms. For large pig farms, human resources and costs are important considerations in farrowing supervision. The existing method, which uses cloud computing-based deep learning to supervise sow farrowing, has a high equipment cost and requires uploading all data to a cloud data center, requiring a large network bandwidth. Thus, this paper proposes an approach for the early warning and supervision of farrowing behaviors based on the embedded artificial-intelligence computing platform (NVIDIA Jetson Nano). This lightweight deep learning method allows the rapid processing of sow farrowing video data at edge nodes, reducing the bandwidth requirement and ensuring data security in the network transmission. Experiments indicated that after the model was migrated to the Jetson Nano, its precision of sow postures and newborn piglets detection was 93.5%, with a recall rate of 92.2%, and the detection speed was increased by a factor larger than 8. The early warning of 18 approaching farrowing (5 h) sows were tested. The mean error of warning was 1.02 h

    Co-opting the fermentation pathway for tombusvirus replication: Compartmentalization of cellular metabolic pathways for rapid ATP generation.

    No full text
    The viral replication proteins of plus-stranded RNA viruses orchestrate the biogenesis of the large viral replication compartments, including the numerous viral replicase complexes, which represent the sites of viral RNA replication. The formation and operation of these virus-driven structures require subversion of numerous cellular proteins, membrane deformation, membrane proliferation, changes in lipid composition of the hijacked cellular membranes and intensive viral RNA synthesis. These virus-driven processes require plentiful ATP and molecular building blocks produced at the sites of replication or delivered there. To obtain the necessary resources from the infected cells, tomato bushy stunt virus (TBSV) rewires cellular metabolic pathways by co-opting aerobic glycolytic enzymes to produce ATP molecules within the replication compartment and enhance virus production. However, aerobic glycolysis requires the replenishing of the NAD+ pool. In this paper, we demonstrate the efficient recruitment of pyruvate decarboxylase (Pdc1) and alcohol dehydrogenase (Adh1) fermentation enzymes into the viral replication compartment. Depletion of Pdc1 in combination with deletion of the homologous PDC5 in yeast or knockdown of Pdc1 and Adh1 in plants reduced the efficiency of tombusvirus replication. Complementation approach revealed that the enzymatically functional Pdc1 is required to support tombusvirus replication. Measurements with an ATP biosensor revealed that both Pdc1 and Adh1 enzymes are required for efficient generation of ATP within the viral replication compartment. In vitro reconstitution experiments with the viral replicase show the pro-viral function of Pdc1 during the assembly of the viral replicase and the activation of the viral p92 RdRp, both of which require the co-opted ATP-driven Hsp70 protein chaperone. We propose that compartmentalization of the co-opted fermentation pathway in the tombusviral replication compartment benefits the virus by allowing for the rapid production of ATP locally, including replenishing of the regulatory NAD+ pool by the fermentation pathway. The compartmentalized production of NAD+ and ATP facilitates their efficient use by the co-opted ATP-dependent host factors to support robust tombusvirus replication. We propose that compartmentalization of the fermentation pathway gives an evolutionary advantage for tombusviruses to replicate rapidly to speed ahead of antiviral responses of the hosts and to outcompete other pathogenic viruses. We also show the dependence of turnip crinkle virus, bamboo mosaic virus, tobacco mosaic virus and the insect-infecting Flock House virus on the fermentation pathway, suggesting that a broad range of viruses might induce this pathway to support rapid replication

    An automatic ear base temperature extraction method for top view piglet thermal image

    No full text
    Ear bases are considered the thermal windows of a piglet. Temperature variation in piglet ear bases can be used as the indicator of a piglet’s health status. However, piglet skin temperatures in thermal windows in the existing research are obtained manually from infrared thermal images captured by a thermography. This has put an obstacle at the automatic identification of piglets with health disorder. An algorithm was proposed in this paper to extract ear base temperature automatically from top view piglet thermal images. Firstly, a SVM (Support Vector Machine) classifier was trained to identify piglet head part. Then, two ear base points were located based on the shape feature of the head part contour. Finally, two maximum temperatures inside the two circles centered by ear base points were extracted as the ear base temperatures. The proposed algorithm was implemented in Matlab® (R2016a) and applied to 100 testing images. The extracted ear base temperatures were compared with those extracted manually by using Fluke SmartView 3.14 (FLUKE Systems). Comparison results showed that for left and right ear base respectively, 97% and 98% of the testing images had an error within 0.4 °C. Ear base temperatures with such accuracy provided a foundation for the automatic identification of sick piglets.status: publishe
    corecore