55 research outputs found

    Nonlinear FEM Analysis on Composite Beams with Web Opening Under Negative Bending Moment

    Get PDF
    In order to investigate the shear behaviour and main factors of steel-concrete composite beam with web opening under negative moment, simply supported composite beam under concentrated load was analysis through finite element method. The finite element software ANSYS is used to calculate and analyse nonlinearly ten specimens. The main changing parameters are thickness, reinforcement ratio of slab and size of opening. The analysis indicates that stiffness and ultimate capacity will reduce greatly after web opening under negative bending moment. Through increasing the thickness of concrete slab, its bearing capacity can be enhanced markedly, and increasing the reinforcement ratio of concrete slab can improve its deformability effectively. Concrete slab makes a great contribution to shear capacity of web opening composite beam under negative moment. With the increase of the height or width of opening, the shear force that concrete slab undertakes will increase relatively

    Evaluation of the green development efficiency of marine fish culture in China

    Get PDF
    Green development efficiency (GDE) is an important criterion for measuring the level of green development. GDE considers not only economic development efficiency but also environmental costs. In China, marine fish culture, as one of the pillar industries of mariculture, promotes green development and industrial transformation and upgradation. Based on data from the field surveys of marine fish farmers (2017–2019) and the China Fishery Statistical Yearbook (2018–2020), this study establishes an evaluation index system and uses the super-slack-based measure model (Super-SBM) to evaluate the GDE of marine fish culture. The results show that the average GDE of marine fish culture in China was 0.9529, which was in an inefficient state. As for culture species, golden pompano (Trachinotus ovatus) and cobia (Rachycentron canadum) were the two species farmed in an efficient state, with a GDE of 1.2107 and 1.0659, respectively. Regarding culture modes, green modes (offshore cage aquaculture, industrial recirculating aquaculture, and engineering pond aquaculture) were in an efficient state, with a GDE of 1.2310, 1.0827, and 1.0401, respectively. Traditional modes (industrial flow-through aquaculture, ordinary cage aquaculture, and ordinary pond aquaculture) were in an inefficient state, with their GDE being 0.9884, 0.8746, and 0.8248, respectively. Green modes have higher GDE than traditional modes. In contrast, the production and culture areas of green modes were less than those of traditional modes because the profits of the same species in green modes were lower than those in traditional modes. The results of this study present an objective assessment of the GDE of marine fish culture in China and provide valuable insights for analyzing the mechanisms to improve the GDE of marine fish culture

    Single-cell chromatin accessibility profiling of cell-state-specific gene regulatory programs during mouse organogenesis

    Get PDF
    In mammals, early organogenesis begins soon after gastrulation, accompanied by specification of various type of progenitor/precusor cells. In order to reveal dynamic chromatin landscape of precursor cells and decipher the underlying molecular mechanism driving early mouse organogenesis, we performed single-cell ATAC-seq of E8.5-E10.5 mouse embryos. We profiled a total of 101,599 single cells and identified 41 specific cell types at these stages. Besides, by performing integrated analysis of scATAC-seq and public scRNA-seq data, we identified the critical cis-regulatory elements and key transcription factors which drving development of spinal cord and somitogenesis. Furthermore, we intersected accessible peaks with human diseases/traits-related loci and found potential clinical associated single nucleotide variants (SNPs). Overall, our work provides a fundamental source for understanding cell fate determination and revealing the underlying mechanism during postimplantation embryonic development, and expand our knowledge of pathology for human developmental malformations

    An integrated chromatin accessibility and transcriptome landscape of human pre-implantation embryos

    Get PDF
    Early human embryonic development involves extensive changes in chromatin structure and transcriptional activity. Here the authors present LiCAT-seq, a method enabling simultaneous profiling of chromatin accessibility and gene expression with ultra-low input of cells and map chromatin accessibility and transcriptome landscapes for human pre-implantation embryos

    Probing the light harvesting and charge rectification of bismuth nanoparticles behind the promoted photoreactivity onto Bi/BiOCl catalyst by (in-situ) electron microscopy

    Get PDF
    State-of-the-art electron microscopy has enabled us to investigate microstructural details down to sub-subångström and milli-electron-volt resolution level. The enhanced photoreactivity over bismuth hybridized BiOCl catalyst (Bi/BiOCl) has been reported recently, however, the mechanistic understandings of this improved photoreactivity especially the optical behavior of bismuth nanoparticles (Bi NPs) are still obscured and in debate. The optical absorption features of Bi NPs and the charge transfer characteristic between bismuth and BiOCl have been considered as the major physicochemical origin for the promoted photoreactivity. Based on the advanced (in-situ) electron microscopy of monochromated electron energy loss spectroscopy in scanning transmission electron microscopy imaging mode (Mono-STEM-EELS) along with related theoretical investigations, in this work, we for the first time distinguished and explained the optical absorption originated from the localized surface plasmon resonances (LSPR) effect and direct band gap transition in an individual bismuth nanoparticle as well as transportation of photogenerated carriers at the interface of Bi/BiOCl. These findings could provide better understandings about the origin of the improved photoreactivity of various bismuth-hybridized photocatalysts

    Using Large Language Models to Generate, Validate, and Apply User Intent Taxonomies

    Full text link
    Log data can reveal valuable information about how users interact with web search services, what they want, and how satisfied they are. However, analyzing user intents in log data is not easy, especially for new forms of web search such as AI-driven chat. To understand user intents from log data, we need a way to label them with meaningful categories that capture their diversity and dynamics. Existing methods rely on manual or ML-based labeling, which are either expensive or inflexible for large and changing datasets. We propose a novel solution using large language models (LLMs), which can generate rich and relevant concepts, descriptions, and examples for user intents. However, using LLMs to generate a user intent taxonomy and apply it to do log analysis can be problematic for two main reasons: such a taxonomy is not externally validated, and there may be an undesirable feedback loop. To overcome these issues, we propose a new methodology with human experts and assessors to verify the quality of the LLM-generated taxonomy. We also present an end-to-end pipeline that uses an LLM with human-in-the-loop to produce, refine, and use labels for user intent analysis in log data. Our method offers a scalable and adaptable way to analyze user intents in web-scale log data with minimal human effort. We demonstrate its effectiveness by uncovering new insights into user intents from search and chat logs from Bing
    corecore