146 research outputs found

    Optimization of embryogenic-callus induction and embryogenesis of Glycyrrhiza glabra

    Get PDF
    Glabridin is a major biologically active flavonoid isolated specifically from the root of Glycyrrhiza glabra, which has many pharmacological activities. The production of the wild G. glabra was sharply decreased due to immoderate and ruinous utilization. In vitro regeneration via somatic embryogenesis is important for clonal propagation and genetic transformation. In this paper, factors affecting the embryogenic calli and embryo induction, maintenance and multiplication of G. glabra are assessed. The results showed that the explants of hypocotyl give the highest calli formation frequency of 93.3% on Murashige and Skoog (MS) medium containing 2.0 mg/L 6-benzylaminopurine (6-BA) and 0.5 mg/L 2,4- dichlorophenoxyacetic acid (2,4-D). The maximum efficiency of embryo were obtained on MS medium with 0.5 mg/L 6-BA + 0.5 mg/L kinetin zeatin (KT) + 0.1 mg/L indole-3-butyric acid (IBA); the embryos could develop further on medium with 1000 mg/L malt extract (ME). The occurrence of the embryogenic calli and proglobular embryo were studied by histological section, indicating the single cell origin of the embryogensis of G. glabra. With the protocol reported herein, some green embryo-like cultures were obtained, from which shoots were successfully regenerated in the germinated medium after 10 months of subculture.Keywords: Glycyrrhiza glabra L., callus induction, embryogenesis, cell culture, histological sectionAfrican Journal of Biotechnology Vol. 9(36), pp. 5823-5829, 6 September, 201

    Characterization of Small Interfering RNAs Derived from the Geminivirus/Betasatellite Complex Using Deep Sequencing

    Get PDF
    BACKGROUND: Small RNA (sRNA)-guided RNA silencing is a critical antiviral defense mechanism employed by a variety of eukaryotic organisms. Although the induction of RNA silencing by bipartite and monopartite begomoviruses has been described in plants, the nature of begomovirus/betasatellite complexes remains undefined. METHODOLOGY/PRINCIPAL FINDINGS: Solanum lycopersicum plant leaves systemically infected with Tomato yellow leaf curl China virus (TYLCCNV) alone or together with its associated betasatellite (TYLCCNB), and Nicotiana benthamiana plant leaves systemically infected with TYLCCNV alone, or together with TYLCCNB or with mutant TYLCCNB were harvested for RNA extraction; sRNA cDNA libraries were then constructed and submitted to Solexa-based deep sequencing. Both sense and anti-sense TYLCCNV and TYLCCNB-derived sRNAs (V-sRNAs and S-sRNAs) accumulated preferentially as 22 nucleotide species in infected S. lycopersicum and N. benthamiana plants. High resolution mapping of V-sRNAs and S-sRNAs revealed heterogeneous distribution of V-sRNA and S-sRNA sequences across the TYLCCNV and TYLCCNB genomes. In TYLCCNV-infected S. lycopersicum or N. benthamiana and TYLCCNV and Ξ²C1-mutant TYLCCNB co-infected N. benthamiana plants, the primary TYLCCNV targets were AV2 and the 5' terminus of AV1. In TYLCCNV and betasatellite-infected plants, the number of V-sRNAs targeting this region decreased and the production of V-sRNAs increased corresponding to the overlapping regions of AC2 and AC3, as well as the 3' terminal of AC1. Ξ²C1 is the primary determinant mediating symptom induction and also the primary silencing target of the TYLCCNB genome even in its mutated form. CONCLUSIONS/SIGNIFICANCE: We report the first high-resolution sRNA map for a monopartite begomovirus and its associated betasatellite using Solexa-based deep sequencing. Our results suggest that viral transcript might act as RDR substrates resulting in dsRNA and secondary siRNA production. In addition, the betasatellite affected the amount of V-sRNAs detected in S. lycopersicum and N. benthamiana plants

    Amorphous photonic topological insulator

    Full text link
    Photonic topological insulators (PTIs) exhibit robust photonic edge states protected by band topology, similar to electronic edge states in topological band insulators. Standard band theory does not apply to amorphous phases of matter, which are formed by non-crystalline lattices with no long-range positional order but only short-range order. Among other interesting properties, amorphous media exhibit transitions between glassy and liquid phases, accompanied by dramatic changes in short-range order. Here, we experimentally investigate amorphous variants of a Chern-number-based PTI. By tuning the disorder strength in the lattice, we demonstrate that photonic topological edge states can persist into the amorphous regime, prior to the glass-to-liquid transition. After the transition to a liquid-like lattice configuration, the signatures of topological edge states disappear. This interplay between topology and short-range order in amorphous lattices paves the way for new classes of non-crystalline topological photonic materials.Comment: 13 pages, 4 figure

    Observation of photonic antichiral edge states

    Full text link
    Chiral edge states are a hallmark feature of two-dimensional topological materials. Such states must propagate along the edges of the bulk either clockwise or counterclockwise, and thus produce oppositely propagating edge states along the two parallel edges of a strip sample. However, recent theories have predicted a counterintuitive picture, where the two edge states at the two parallel strip edges can propagate in the same direction; these anomalous topological edge states are named as antichiral edge states. Here we report the experimental observation of antichiral edge states in a gyromagnetic photonic crystal. The crystal consists of gyromagnetic cylinders in a honeycomb lattice, with the two triangular sublattices magnetically biased in opposite directions. With microwave measurement, unique properties of antichiral edge states have been observed directly, which include the titled dispersion, the chiral-like robust propagation in samples with certain shapes, and the scattering into backward bulk states at certain terminations. These results extend and supplement the current understanding of chiral edge states

    Epitaxial growth of high quality Mn3SnMn_3Sn thin films by pulsed laser deposition

    Full text link
    Non-collinear antiferromagnet Weyl semimetal Mn3SnMn_3Sn have attracted great research interest recently. Although large anomalous Hall effect, anomalous Nernst effect and magneto-optical effect have been observed in Mn3SnMn_3Sn, most studies are based on single crystals. So far, it is still challenging to grow high quality epitaxial Mn3SnMn_3Sn thin films with transport and optical properties comparable to their single crystal counterparts. Here, we report the structure, magneto-optical and transport properties of epitaxial Mn3SnMn_3Sn thin films fabricated by pulsed laser deposition (PLD). Highly oriented Mn3+xSn1βˆ’xMn_{3+x}Sn_{1-x} (0001) and (112Λ‰\bar20) epitaxial films are successfully growth on single crystalline Al2O3Al_2O_3 and MgO substrates. Large anomalous Hall effect (AHE) up to βˆ£Ξ”RH∣\left| \Delta R_H\right|=3.02 ΞΌΞ©β‹…cm\mu\Omega\cdot cm, and longitudinal magneto-optical Kerr effect (LMOKE) with ΞΈK\theta_K = 38.1 mdeg at 633 nm wavelength are measured at 300 K temperature, which are comparable to Mn3SnMn_3Sn single crystals. Our work demonstrates that high quality Mn3SnMn_3Sn epitaxial thin films can be fabricated by PLD, paving the way for future device applications

    Arctic-Wide Sea Ice Thickness Estimates From Combining Satellite Remote Sensing Data and a Dynamic Ice-Ocean Model with Data Assimilation During the CryoSat-2 Period

    Get PDF
    Exploiting the complementary character of CryoSat-2 and Soil Moisture and Ocean Salinity satellite sea ice thickness products, daily Arctic sea ice thickness estimates from October 2010 to December 2016 are generated by an Arctic regional ice-ocean model with satellite thickness assimilated. The assimilation is performed by a Local Error Subspace Transform Kalman filter coded in the Parallel Data Assimilation Framework. The new estimates can be generally thought of as combined model and satellite thickness (CMST). It combines the skill of satellite thickness assimilation in the freezing season with the model skill in the melting season, when neither CryoSat-2 nor Soil Moisture and Ocean Salinity sea ice thickness is available. Comparisons with in situ observations from the Beaufort Gyre Exploration Project, Ice Mass Balance Buoys, and the NASA Operation IceBridge demonstrate that CMST reproduces most of the observed temporal and spatial variations. Results also show that CMST compares favorably to the Pan-Arctic Ice-Ocean Modeling and Assimilation System product and even appears to correct known thickness biases in the Pan-Arctic Ice-Ocean Modeling and Assimilation System. Due to imperfect parameterizations in the sea ice model and satellite thickness retrievals, CMST does not reproduce the heavily deformed and ridged sea ice along the northern coast of the Canadian Arctic Archipelago and Greenland. With the new Arctic sea ice thickness estimates sea ice volume changes in recent years can be further assessed

    Unprecedented Arctic sea ice thickness loss and multiyear-ice volume export through Fram Strait during 2010-2011

    Get PDF
    The satellite-observed sea ice thickness records from 2003 to 2020 identify an extreme sea ice thickness loss during 2010–2011. Ice thickness budget analysis demonstrates that the thickness loss was associated with an extraordinarily large multiyear ice volume export through the Fram Strait during the season of sea ice advance. High cloudiness led to positive anomalies of net longwave radiation, and positive net surface energy flux anomalies supported enhanced sea ice melt from June to August. Due to the multiyear ice loss, the Arctic sea ice became more sensitive to subsequent atmospheric anomalies. The reduced surface albedo triggering a positive ice-albedo amplifying feedback and contributed to the accelerating loss of ice thickness. These tightly coupled events highlight that the increasingly younger and thinner Arctic sea ice is becoming more vulnerable to external forcing and created the precondition for the rapid reduction in sea ice extent in 2012
    • …
    corecore