612 research outputs found

    Telomere Recombination Accelerates Cellular Aging in Saccharomyces cerevisiae

    Get PDF
    Telomeres are nucleoprotein structures located at the linear ends of eukaryotic chromosomes. Telomere integrity is required for cell proliferation and survival. Although the vast majority of eukaryotic species use telomerase as a primary means for telomere maintenance, a few species can use recombination or retrotransposon-mediated maintenance pathways. Since Saccharomyces cerevisiae can use both telomerase and recombination to replicate telomeres, budding yeast provides a useful system with which to examine the evolutionary advantages of telomerase and recombination in preserving an organism or cell under natural selection. In this study, we examined the life span in telomerase-null, post-senescent type II survivors that have employed homologous recombination to replicate their telomeres. Type II recombination survivors stably maintained chromosomal integrity but exhibited a significantly reduced replicative life span. Normal patterns of cell morphology at the end of a replicative life span and aging-dependent sterility were observed in telomerase-null type II survivors, suggesting the type II survivors aged prematurely in a manner that is phenotypically consistent with that of wild-type senescent cells. The shortened life span of type II survivors was extended by calorie restriction or TOR1 deletion, but not by Fob1p inactivation or Sir2p over-expression. Intriguingly, rDNA recombination was decreased in type II survivors, indicating that the premature aging of type II survivors was not caused by an increase in extra-chromosomal rDNA circle accumulation. Reintroduction of telomerase activity immediately restored the replicative life span of type II survivors despite their heterogeneous telomeres. These results suggest that telomere recombination accelerates cellular aging in telomerase-null type II survivors and that telomerase is likely a superior telomere maintenance pathway in sustaining yeast replicative life span

    2,4-Dichloro-7-fluoro­quinazoline

    Get PDF
    The mol­ecule of the title compound, C8H3Cl2FN2, is essentially planar, with a maximum deviation of 0.018 (2) Å. In the crystal, π–π stacking is observed between parallel quinazoline moieties of adjacent mol­ecules, the centroid–centroid distance being 3.8476 (14) Å

    Saccharomyces cerevisiae Est3p dimerizes in vitro and dimerization contributes to efficient telomere replication in vivo

    Get PDF
    In Saccharomyces cerevisiae at least five genes, EST1, EST2, EST3, TLC1 and CDC13, are required for telomerase activity in vivo. The telomerase catalytic subunit Est2p and telomerase RNA subunit Tlc1 constitute the telomerase core enzyme. Est1p and Est3p are the other subunits of telomerase holoenzyme. In order to dissect the function of Est3p in telomere replication, we over-expressed and purified recombinant wild-type and mutant Est3 proteins. The wild-type protein, as well as the K71A, E104A and T115A mutants were able to dimerize in vitro, while the Est3p-D49A, -K68A or -D166A mutant showed reduced ability to dimerize. Mutations in Est3p that decreased dimerization also appeared to cause telomere shortening in vivo. Double point mutation of Est3p-D49A-K68A and single point mutation of Est3p-K68A showed similar telomere shortening, suggesting that the K68 residue might be more important for telomerase activity. The ectopic co-expression of K71A or T115A mutant with wild-type Est3p using centromere plasmids caused telomere shortening, while co-expression of the D49A, K68A, D86A or F103A mutants with wild-type Est3p had no effect on telomere length regulation. These data suggested that dimerization is important for Est3p function in vivo

    T-Nb2O5 nanoparticle enabled pseudocapacitance with a fast Li-ion intercalation

    Get PDF
    Orthorhombic Nb2O5 (T-Nb2O5) nanocrystallites are successfully fabricated through evaporation induced self-assembly (EISA) method guided by a commericalised triblock copolymer – Pluronic F127. We demonstrate a morphology transition of T-Nb2O5 from continuous porous nanofilm to monodisperse nanoparticle by changing the content of Pluronic F127. The electrochemical results show that the optimized monodisperse of Nb-2 with particle size of 20 nm achieve premier Li-ion intercalation kinetics and higher rate capability than mesoporous T-Nb2O5 nanofilms. Nb-2 present an initial intercalation capacity of 528 and 451 C g-1 at current densities of 0.5 and 5 A g-1 and performed stable capacity of 499 C g-1 after 300 charge/discharge cycles and 380 C g-1 after 1000 cycles, respectively. We would expect this copolymer guided monodispersing of T-Nb2O5 nanoparticles with high Li+ intercalation performance to open up new window for novel EES technologies

    Maximum Relative Entropy of Coherence for Quantum Channels

    Full text link
    Based on the resource theory for quantifying the coherence of quantum channels, we introduce a new coherence quantifier for quantum channels via maximum relative entropy. We prove that the maximum relative entropy for coherence of quantum channels is directly related to the maximally coherent channels under a particular class of superoperations, which results in an operational interpretation of the maximum relative entropy for coherence of quantum channels. We also introduce the conception of sub-superchannels and sub-superchannel discrimination. For any quantum channels, we show that the advantage of quantum channels in sub-superchannel discrimination can be exactly characterized by the maximum relative entropy of coherence for quantum channels. Similar to the maximum relative entropy of coherence for channels, the robustness of coherence for quantum channels has also been investigated. We show that the maximum relative entropy of coherence for channels provides new operational interpretations of robustness of coherence for quantum channels and illustrates the equivalence of the dephasing-covariant superchannels, incoherent superchannels, and strictly incoherent superchannels in these two operational tasks
    corecore